Conference paper
Part of the NATO Science Series book series (NAIV, volume 76)


The goal of work was to determine potential of keratinolytic fungi for degradation of crude oil. Two strains belonging to species Chrysosporium keratinophilum and Trichophyton ajelloi were isolated form sewage sludge and oil waste-contaminated soil from a refinery. Preliminary experiment was performed in liquid media with increasing concentration of peptone with and without presence of hair(source of keratin). The mean value of hydrocarbons loss was 39,8% during degradation of peptone and 49,2% during degradation of peptone and hair. The ability for removal of hydrocarbons was characteristic for fungal strains and probably associated with their high degree of adaptation for living in habitats heavily contaminated with petroleum hydrocarbons. It was observed that petroleum hydrocarbon removal rates depended on fungal proteolytic activity, biomass production, and easily degradable protein content in the medium.


Petroleum Hydrocarbon Fungal Inoculum Keratinophilic Fungus Paecilomyces Lilacinus Peptone Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bieszkiewicz, E., Pakuła A., Boszczyk-Maleszak, H., Mycielski, R., 1999, Research, Materiały VI Ogólnopolskiego Sympozjum Naukawo-Technicznego “Biotechnologia ŚArodowiskowa”, Wrocław, pp. 39–46, (in Polish).Google Scholar
  2. Cerniglia, C. E., 1997, Fungal, Journal of Industrial Microbiology and Biotechnology 19: 324–333.CrossRefGoogle Scholar
  3. Chesters, C.G.C, Mathison, G.E., 1963, The Decompostion, Sabouraudia 2: 225–237.Google Scholar
  4. Chovez-Gomez, B., Quinteri, R., Esperza-Garcia, F., Mesta-Howard, A.M. et al., 2003, Removal, Biosource Technology 89: 177–183.CrossRefGoogle Scholar
  5. Davies, J.S., Westlake, W.S., 1979, Crude Oil, Can. Journal of Microbiology 25: 146–156.CrossRefGoogle Scholar
  6. Deshmukh, S.K., Agrawal, S.C., Jain, P.C., 1981, Colonization, Mykosen 24(10):611–613.Google Scholar
  7. Deshmukh, S.K., Agrawal, S.C., 1985, Degradation, Mykosen 28(9):463–466.Google Scholar
  8. Deshmukh, S.K., Agrawal, S.C., 1998, Biology, in: Microbes for Health, Wealth and Sustainable Environment, Malhotra Publishin House, News Delhi, pp. 253–272.Google Scholar
  9. Field, J.A., Heessels, E., Wijngaarde, R., Koterman, M., de Jong, E., de Bont, J.A.M., 1994, The Physiology, Applied Biotechnology for Site Remediation, pp. 143–151.Google Scholar
  10. Field, J.A., Feiken, H., Hage, A., Kotterman M.J.J., 1995, Bioremediation 3(3):165–171.Google Scholar
  11. Garg, A.P., Gandotra, S., Mukerji K.G., Pugh, G.J.F., 1985, Ecology, Proc. Indian Acad. Sci. 94: 149–163.CrossRefGoogle Scholar
  12. Harlow, E., Lane, D., 1988, Antibodies — a Laboratory Manual, Cold Spring Harbor Laboratory, pp. 675.Google Scholar
  13. Giraud, F., Giraud, P., Kadri, M., Blake, G., Steiman, R., 2001, Biodegradation, Wat. Res. 35(17):4126–4136.CrossRefGoogle Scholar
  14. Hausemann, M.H., 1997, Incomplete, Bioremediation Journal 1(1):27–39.Google Scholar
  15. Hermanowicz W., 1976, Physico-chemicals Testing of Water and Wastewater, Arkady, Warszawa, (in Polish).Google Scholar
  16. Johnston, C.G., Becerra, M.A., Lutz, R.L., Staton, M.A., Axtel, C.A., Bass, B.D., 1994, Fungal Remediation, In Situ and On-Site Bioremediation 2: 537–544.Google Scholar
  17. Kańska, Z., Łebkowska, M., Sztompka, E., Kasiura, K., Vogtman, H., 1997, Elimination, Bioinzynieria 1: 231–242 (in Polish).Google Scholar
  18. Kączkowski, J., 1974, Basic Biochemistry, Wydawnictwa Naukowo-Techniczne, Warszawa, (in Polish).Google Scholar
  19. Kunert, J., 2000, Physiology, in: Biology of dermatophytes and other keratinophilic fungi, R.K.S. Kushwaha & J. Guarro eds., Revista Iberoamericana de Micología, Bilbao, pp. 77–85.Google Scholar
  20. Kunicki-Goldfinger, W.J.H., 1994, Life of Bacteria, PWN, Warszawa (in Polish).Google Scholar
  21. Lestan, D., Lestan, M., Lamar, R.T., Fungal Inocula, Proceedings of International Symposium Environmental Biotechnology, Oostende, pp. 357–360.Google Scholar
  22. Łebkowska, M., 1996, Uses of Microorganisms, Gas, Water and Sanitary Technology 3: 117–118 (in Polish).Google Scholar
  23. MacGillivray, A.R., Skiaris, M.P., 1993, Biotransformation, Applied and Environmental Microbiology 59: 1613–1618.Google Scholar
  24. Malina G., Szczepański A., 1994, Methodical guidelines for evaluation of soil and ground-water pollution with petroleum products and other chemical substances during land reclamation, PIOŚ, Warszawa.Google Scholar
  25. Maliszewska-Kordybach, B., 1993, Stability of Polycyclic Aromatic Hydrocarbons in Soil, Assistant Professor Thesis, Instytut Uprawy Nawozenia i Gleboznawstwa, Dział Wydawnictw Naukowych, Puławy.Google Scholar
  26. Marshall, R.C., Orwin, D.F.G., Gillespie, J.M., 1991, Structure, Electron Microsc. Rev. 4: 47–83.CrossRefGoogle Scholar
  27. McGugan, B.R., Lees, Z.M., Senior, E., 1995, Bioremediation, Bioremediation 3(3):149–156.Google Scholar
  28. Nigam, N., Kushwaha, R.K.S., 1992, Biodegradation, Trans. Soc. Japan 33: 481–486.Google Scholar
  29. Nowak, A., Hawrot, M., 1999, Isolation, VI Ogólnopolskie Sympozjum Naukowo-Techniczne “Biotechnologia Środowiskowa”, Wroclaw, pp. 237–243, (in Polisch).Google Scholar
  30. Nowosielski, O., 1974, Evaluation Methods of Fertilization Needs, PWRiL, Warszawa (in Polish).Google Scholar
  31. Onifade, A.A., Al-Sane, N.A., Al-Musallam, A.A., Al-Zarban, S., 1998, Potentials, Biosources Technology 66: 1–11.CrossRefGoogle Scholar
  32. Paveia, M.H., 1975, Culture, Mycophatologia 55: 35–40.CrossRefGoogle Scholar
  33. Prochacki, H., 1975, Basis of Medical Mycology, PZWL, Warszawa, (in Polish).Google Scholar
  34. Ravelet, C., Krivobok, S., Sage, L., Steiman, R., 2000, Biodegradation, Chemosphere 40: 557–563.CrossRefGoogle Scholar
  35. Saville, B., 1958, A Scheme, Analyst 83: 670–675.CrossRefGoogle Scholar
  36. Safranek, W.W., Goos, R.D., 1982, Degradation, Can. J. Microbiol 28: 137–140.CrossRefGoogle Scholar
  37. Schlegel, H.G., 2000, General Microbiology, PWN, Warszawa.Google Scholar
  38. Stryer, L., 1995, Biochemistry, Fourth Edition, W.H. Freeman & Company, New York.Google Scholar
  39. Takada, S., Matsueda T., Kondo, R., Sakai, K., 1994, Degradation, In Situ and On-Site Bioremediation, 2: 545–550.Google Scholar
  40. Ulfig, K., 2000, The Occurrence, in: Biology of Dermatophytes and Other Keratinophilic Fungi, R.K.S. Kushwaha and J. Guarro, Revista Iberoamericana de Micologia, Bilbao, pp. 44–50.Google Scholar
  41. Vanbreuseghem, R., 1952, Technique, Ann. Soc. Belge Med. Trop. 32: 173.Google Scholar
  42. Watkinson, R.J., Morgan, P., 1990, Physiology, Biodegradation 1: 79–92.CrossRefGoogle Scholar
  43. Wolski, T., 1985, Modificated Keratin Proteins, Physico-chemical Properties, Analysis and Application, Assistant Professor Thesis, Lublin, (in Polish).Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Environmental Biotechnology DepartmentSilesian University of TechnologyGliwicePoland
  2. 2.Department of Environmental MicrobiologyInstitute for Ecology of Industrial AreasKatowicePoland

Personalised recommendations