Advertisement

REGULATION OF THE ATRAZINE DEGRADATIVE PATHWAY IN Pseudomonas

Conference paper
  • 918 Downloads
Part of the NATO Science Series book series (NAIV, volume 76)

Abstract

In recent times, the use of the s-triazine herbicide atrazine has become a major concern, due to increasing evidence of severe ecotoxicological effects. The development of strategies for bioremediation of contaminated soils and waters requires the isolation and development of strains that harbor an appropriate catabolic pathway, are competitive in the wild and display the degradative phenotype under field conditions. A limitation to the use of bioremediation for the decontamination of atrazine-polluted sites is the fact that the presence of preferential nitrogen sources, such as those used for fertilization of agricultural soils often inhibits the degradative pathway, resulting in low degradation rates. We have characterized this phenomenon in the model strain Pseudomonas sp. ADP. In this organism, atrazine degradation is nitrogen-repressed both in cultures and in soil. Nitrogen status is sensed from intracellular pools of metabolites. We have used this knowledge to develop a mutant unable to assimilate nitrate that displays an efficient degradative phenotype in nitrate-amended soil. The inhibitory effect of nitrogen operates at the level of gene expression. One of the targets of this regulation is the cyanuric acid degradative operon atzDEF, which is coordinately activated by nitrogen limitation and the presence of cyanuric acid. A complex regulatory circuit involving at least two regulators and two forms of RNA polymerase is responsible for both responses. The atrazine degradative pathway has proven an attractive model for both basic and applied studies on biodegradation.

Keywords

Nitrogen Source Cyanuric Acid Leopard Frog Nitrogen Regulation Atrazine Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abdelhafid, R., Houot, S., and Barriuso, E., 2000a, Dependence of atrazine degradation on C and N availability in adapted and non-adapted soils, Soil Biol. Biochem. 32: 389–401.CrossRefGoogle Scholar
  2. Abdelhafid, R., Houot, S., and Barriuso, E., 2000b, How increasing availabilities of carbon and nitrogen affect atrazine behaviour in soils, Biol. Fertil. Soils. 30: 333–340.CrossRefGoogle Scholar
  3. Allran, J. W., and Karasov, W. H., 2000, Effects of atrazine and nitrate on the northern leopard frog (Rana pipiens) larvae exposed in the laboratory from posthatch through metamorphosis, Environ. Toxicol. Chem. 19: 2850–2855.CrossRefGoogle Scholar
  4. Alvey, S., and. Crowley, D. E., 1995, Influence of organic amendments on biodegradation of atrazine as a nitrogen source, J. Environ. Qual. 24: 1156–1162.CrossRefGoogle Scholar
  5. Bichat, F., Sims, G. K., and Mulvaney, R. L., 1999, Microbial utilization of heterocyclic nitrogen from atrazine, Soil Sci. Soc. Am. J. 63: 100–110.CrossRefGoogle Scholar
  6. Boundy-Mills, K. L., de Souza, M. L., Wackett, L. P., Mandelbaum, R. T., and Sadowsky, M. J., 1997, The atzB gene of Pseudomonas sp. strain ADP encodes hydroxyatrazine ethylaminohydrolase, the second step of a novel atrazine degradation pathway, Appl. Environ. Microbiol. 63: 916–923.Google Scholar
  7. de Souza, M. L., Wackett, L. P., Boundy-Mills, K. L., Mandelbaum, R. T. and Sadowsky, M. J., 1995, Cloning, characterization and expression of a gene region from Pseudomonas sp. strain ADP involved in the dechlorination of atrazine, Appl. Environ. Microbiol. 61: 3373–3378Google Scholar
  8. de Souza, M. L., Seffernick, J., Martinez, B., Sadowsky, M. J., and Wackett, L. P., 1998, The atrazine catabolism genes atzABC are widespread and highly conserved, J. Bacteriol. 180: 1951–1954.Google Scholar
  9. de Souza, M. L., Wackett, L. P., and Sadowsky, M. J., 1998, The atzABC genes encoding atrazine catabolism are located on a self-transmissible plasmid in Pseudomonas sp. strain ADP, Appl Environ Microbiol. 64: 2323–2326.Google Scholar
  10. Entry, J. A., Mattson, K. G., and Emmingham, W. H., 1993, The influence of nitrogen on atrazine and 2,4-dichlorophenoxyacetic acid mineralization in grassland soils, Biol. Fertil. Soils. 16: 179–182.CrossRefGoogle Scholar
  11. García-González, V., Govantes, F., Shaw, L. J., Burns, R. G., and Santero, E., 2003, Nitrogen control of atrazine utilization in Pseudomonas sp. strain ADP, Appl. Environ. Microbiol. 69: 6987–6993.CrossRefGoogle Scholar
  12. García-González, V., Govantes, F., Porrúa, O., and Santero, E., 2004, Regulation of the Pseudomonas sp. ADP cyanuric acid degradative operon, J. Bacteriol. In press.Google Scholar
  13. Gebendinger, N., and Radosevich, M., 1999, Inhibition of atrazine degradation by cyanazine and exogenous nitrogen in bacterial isolate M91-3, Appl. Microbiol. Biotechnol. 51: 375–81.CrossRefGoogle Scholar
  14. Hayes, T., Haston, K., Tsui, M., Hoang, A., Haeffele, C., and Vonk, A., 2003, Atrazineinduced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): Laboratory and field evidence, Environ. Health Perspect. 111: 568–75.CrossRefGoogle Scholar
  15. Hayes, T. B., Collins, A., Lee, M., Mendoza, M., Noriega, N., Stuart, A. A., and Vonk, A., 2002, Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses, Proc. Natl. Acad. Sci. U S A. 99: 5476–80.CrossRefGoogle Scholar
  16. Kolpin, D. W., and Kalkhoff, S. J., 1993, Atrazine degradation in a small stream in Iowa, Environ. Sci. Technol. 27: 134–139.CrossRefGoogle Scholar
  17. Kolpin, D. W., Thurman, E. M., and Goolsby, D. A., 1996, Occurrence of selected herbicides and their metabolites in near-surface aquifers of the midwestern United States, Environ. Sci. Technol. 30: 385–390.CrossRefGoogle Scholar
  18. Kustu, S., Santero, E., Keener, J., Popham, D., and Weiss, D., 1989, Expression of sigma-54 (ntrA)-dependent genes is probably united by a common mechanism, Microbiol. Rev. 53: 367–376.Google Scholar
  19. Mandelbaum, R. T., Wackett, L. P., and Allan, D. L., 1995, Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine, Appl. Environ. Microbiol. 61: 1451–1457.Google Scholar
  20. Mandelbaum, R. T., Wackett, L. P., and Allan, D. L., 1993, Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures, Appl. Environ. Microbiol. 59: 1695–1701.Google Scholar
  21. Martinez, B., Tomkins, J., Wackett, L. P., Wing, R., and Sadowsky, M. J., 2001, Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain. ADP, J. Bacteriol. 183: 5684–97.CrossRefGoogle Scholar
  22. Merrick, M. J., and Edwards, R. A., 1995, Nitrogen control in bacteria, Microbiol. Rev. 59: 604–22.Google Scholar
  23. Radosevich, M., Traina, S. J., Hao, Y. L., and Tuovinen, O. H., 1995, Degradation and mineralization of atrazine by a soil bacterial isolate, Appl. Environ. Microbiol. 61: 297–302.Google Scholar
  24. Ralebitso, T. K., Senior, E., and van Verseveld, H. W., 2002., Microbial aspects of atrazine degradation in natural environments, Biodegradation 13: 11–19.CrossRefGoogle Scholar
  25. Richards, R. P., and Baker, D. B., 1993, Pesticide concentration patterns in agricultural drainage networks in the Lake Erie basin, Environ. Toxicol. Chem. 12: 13–36.Google Scholar
  26. Rousseaux, S., Hartmann, A., and Soulas, G., 2001, Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils, FEMS Microbiol. Ecol. 36: 211–222.CrossRefGoogle Scholar
  27. Sadowsky, M. J., Tong, Z., de Souza, M. L. and Wackett, L. P., 1998, AtzC is a new member of the amidohydrolase protein superfamily and is homologous to other atrazinemetabolizing enzymes, J. Bacteriol. 180: 152–158.Google Scholar
  28. Sajjaphan, K., Shapir, N., Wackett, L. P., Palmer, M., Blackmon, B., Tomkins, J. and Sadowsky, M. J., 2004, Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli, Appl. Environ. Microbiol. 70: 4402–4407.CrossRefGoogle Scholar
  29. Schell, M. A., 1993, Molecular biology of the LysR family of transcriptional regulators, Ann. Rev. Microbiol. 47: 597–626.CrossRefGoogle Scholar
  30. Strong, L. C., Rosendahl, C., Johnson, G., Sadowsky, M. J. and Wackett, L. P., 2002, Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds, Appl. Environ. Microbiol. 68: 5973–598.CrossRefGoogle Scholar
  31. Struthers, J. K., Jayachandran, K., and Moorman, T. B., 1998, Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil, Appl. Environ. Microbiol. 64: 3368–75.Google Scholar
  32. Topp, E., Mulbry, W. M., Zhu, H., Nour, S. M. and Cuppels, D., 2000, Characterization of striazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soil, Appl. Environ. Microbiol. 66: 3134–3141.CrossRefGoogle Scholar
  33. Wackett, L. P., Sadowsky, M. J., Martinez, B., and Shapir, N., 2002, Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies, Appl. Microbiol. Biotechnol. 58: 39–45.CrossRefGoogle Scholar
  34. Wild, A., 1988, Plant nutrients in soil: nitrogen, in: Russell’s Soil Conditions and Plant Growth, A. Wild, ed., Longman, Harlow, Essex, pp. 652–695.Google Scholar
  35. Yanze-Kontchou, C. and Gschwind, N., 1994, Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain, Appl. Environ. Microbiol. 60: 4297–4302.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Centro Andaluz de Biología de Desarrollo and Departamento de Ciencias AmbientalesUniversidad Pablo de OlavideSevillaSpain

Personalised recommendations