Skip to main content

INFLUENCE OF THE RHIZOSPHERE ON THE BIODEGRADATION OF ORGANIC XENOBIOTICS – A CASE STUDY WITH 2,4-DICHLOROPHENOXYACETIC ACID

  • Conference paper
Book cover Bioremediation of Soils Contaminated with Aromatic Compounds

Part of the book series: NATO Science Series ((NAIV,volume 76))

Abstract

The rhizosphere is the unique environment at the plant-soil interface and a zone of intense soil-plant-microbe interaction. One recorded consequence of this complex interaction is the enhanced microbial biodegradation of organic xenobiotics. Mechanisms suggested to explain rhizosphere enhanced biodegradation range from the direct role of rhizodeposits acting as xenobiotic structural analogs to more indirect possibilities such as increased bioavailability in the rhizosphere. Our aim was to learn more about the mechanisms of enhanced biodegradation in the rhizosphere using the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) as a model xenobiotic. We report that 2,4-D mineralization is enhanced by root exudates and root debris of legume species. This rhizosphere enhancement may be due to the action of a rhizodeposit component in inducing the 2,4-D pathway. We discuss the possibility that the stimulatory component belongs to the chemical class flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Alexander M. (1982) Most probable number method for microbial populations. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. 2nd Edition (A. L. Page, R. H. Miller, and D. R. Keeney, Eds.), pp. 815–820. American Society for Agronomy, Madison, WI.

    Google Scholar 

  • Aoki T., Akashi T. and Ayabe S. (2000) Flavonoids of Leguminous plants: structure, biological activity and biosynthesis. Journal of Plant Research 113, 475–488.

    Article  Google Scholar 

  • Bennie A.T.P. (1991) Growth and Mechanical Impedance. In Plant Roots the Hidden Half (Y. Waisel, A. Eshel, and U. Kafkafi, Eds.), pp. 393–414. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Bertin C., Yang X. and Weston L.A. (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil 256, 67–83.

    Article  CAS  Google Scholar 

  • Bowen G. and Rovira A.D. (1991) The rhizosphere — the hidden half of the hidden half. In Plant Roots the Hidden Half (Y. Waisel, A. Eshel, and U. Kafkafi, Eds.), pp. 641–669. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Boyle J.J. and Shann J.R. (1995) Biodegradation of phenol, 2,4-DCP, 2,4-D, and 2,4,5-T in field-collected rhizosphere and nonrhizosphere soils. Journal of Environmental Quality 24, 782–785.

    Article  CAS  Google Scholar 

  • Brimecombe M.J., De Leij F.A. and Lynch J.M. (2001) The effect of root exudates on rhizosphere microbial populations. In The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface (R. Pinton, Z. Varanini, and P. Nannipieri, Eds.), pp. 95–140. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Broughton W.J., Jabbouri S. and Perret X. (2000) Keys to symbiotic harmony. Journal of Bacteriology 182, 5641–5652.

    Article  CAS  Google Scholar 

  • Broughton W.J., Zhang F., Perret X. and Staehelin C. (2003) Signals exchanged between legumes and Rhizobium: agricultural uses and perspectives. Plant and Soil 252, 129–137.

    Article  CAS  Google Scholar 

  • Burns R.G. and Stach J.E.M. (2002) Microbial ecology of soil biofilms: substrate bioavailability, bioremediation and complexity. Developments in Soil Science 28B, 17–42.

    Article  CAS  Google Scholar 

  • Buyer J.S., Roberts D.P. and Russek-Cohen E. (2002) Soil and plant effects on microbial community structure. Canadian Journal of Microbiology 48, 955–964.

    Article  CAS  Google Scholar 

  • Cebolla A., Sousa C. and de Lorenzo V. (1997) Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers. Journal of Biological Chemistry 111, 3986–3992.

    Google Scholar 

  • Dakora F.D. and Phillips D.A. (1996) Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiological and Molecular Plant Pathology 49, 1–20.

    Article  CAS  Google Scholar 

  • Dakora F.D. and Phillips D.A. (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil 245, 35–47.

    Article  CAS  Google Scholar 

  • Dale J.W. (1998) “Molecular Genetics of Bacteria”. John Wiley and Sons, Chichester.

    Google Scholar 

  • de Lipthay J.R., Barkay T. and Sorensen S.J. (2001) Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA. gene encoding a 2,4-dichlorophenoxyacetic acid dioxygenase. FEMS Microbiology Ecology 35, 75–84.

    Article  Google Scholar 

  • De Rore H., Demolder K., De Wilde K., Top E., Houwen F. and Verstraete W. (1994) Transfer of the catabolic plasmid RP4::Tn4371 to indigenous soul bacteria and its effect on respiration and biphenyl breakdown. FEMS Microbiology Ecology 15, 71–81.

    Article  CAS  Google Scholar 

  • Dejonghe W., Goris J., El Fantroussi S., Hofte M., De Vos P., Verstraete W. and Top E.M. (2000) Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Applied and Environmental Microbiology 66, 3297–3304.

    Article  CAS  Google Scholar 

  • Dietz A.C. and Schnoor J.L. (2001) Advances in phytoremediation. Environmental Health Perspectives 109 (Suppl 1), 163–138.

    Article  CAS  Google Scholar 

  • Don R.H. and Pemberton J.M. (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. Journal of Bacteriology 145, 681–686.

    CAS  Google Scholar 

  • Dorn E., Hellwig M., Reineke W. and Knackmuss H.J. (1974) Isolation and characterisation of a 3-chlorobenzoate degrading pseudomonad. Archives of Microbiology 99, 61–70.

    Article  Google Scholar 

  • Dunning Hotopp J.C. and Hausinger R.P. (2001) Alternative substrates of 2,4-dichlorophenoxyacetate/alpa-ketoglutarate dioxygenase. Journal of Molecular Catalysis B: Enzymatic 15, 155–162.

    Article  CAS  Google Scholar 

  • Filer K. and Harker A.R. (1997) Identification of the inducing agent of the 2,4-dichlorophenoxyacetic acid pathway encoded by plasmid pJP4. Applied and Environmental Microbiology 63, 317–320.

    CAS  Google Scholar 

  • Fukumori F. and Hausinger R.P. (1993a) Alicaligenes eutrophus JMP134 “2,4-dichlorophenoxyacetate monooxygenase” is an α-ketoglutarate-dependent dioxygenase. Journal of Bacteriology 175, 2083–2086.

    CAS  Google Scholar 

  • Fukumori F. and Hausinger R.P. (1993b) Purification and characterization of 2,4-dichlorophenoxyacetate/alpha-ketoglutarate dioxygenase. Journal of Biological Chemistry 268, 24311–24317.

    CAS  Google Scholar 

  • Fulthorpe R.R. (1996) Pristine soil mineralize 3-chlorobenzoate and 2,4-dichlorophenoxyacetate via different microbial populations. Applied and Environmental Microbiology 62, 1159–1166.

    CAS  Google Scholar 

  • Gilbert E.S. and Crowley D.E. (1997) Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain BIB. Applied and Environmental Microbiology 63, 1933–1938.

    CAS  Google Scholar 

  • Gray E. and Smith D. (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology & Biochemistry 37, 395–412.

    Article  CAS  Google Scholar 

  • Hiltner L. (1904) Uber neurer erfahrungen und probleme auf dem gebeit der bodenbakteriologie und unter besonderer berucksichtigung der grundungung und brache. Arbeiten der Deutschen Landwirtschaftsgesellschaft Berlin 98, 59–78.

    Google Scholar 

  • Hsu T.-S. and Bartha R. (1979) Accelerated mineralisation of two organophosphate insecticides in the rhizosphere. Applied and Environmental Microbiology 37, 36–41.

    CAS  Google Scholar 

  • Hungria M. and Stacey G. (1997) Molecular signals exchanged between host plants and rhizobia: basic aspects and potential application in agriculture. Soil Biology & Biochemistry 29, 819–830.

    Article  CAS  Google Scholar 

  • Itoh K., Kanda R., Momoda Y., Sumita Y., Kamagata Y., Suyama K. and Yamamoto H. (2000) Presence of a 2,4-D-catabolizing bacteria in a Japanese arable soil that belong to BANA (Bradyrhizobium-Agromonas-Nitrobacter-Afipia) cluster in alpha-Proteobacteria. Microbes and Environments 15, 113–117.

    Article  Google Scholar 

  • Itoh K., Kanda R., Sumita Y., Kim H., Kamagata Y., Suyama K., Yamamoto H., Hausinger R.P. and Tiedje J.M. (2002) tfdA-like genes in 2,4-dichlorophenoxyacetic acid-degrading bacteria belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia cluster in alpha-Proteobacteria. Applied and Environmental Microbiology 68, 3449–3454.

    Article  CAS  Google Scholar 

  • Itoh K., Tashiro Y., Uobe K., Kamagata Y., Suyama K. and Yamamoto H. (2004) Root nodule Bradyrhizobium spp. Harbor tfdAα and cadA, homologous with genes encoding 2,4-dichlorophenoxyacetic acid- degrading proteins. Applied and Environmental Microbiology 70, 2110–2118.

    Article  CAS  Google Scholar 

  • Jain V. and Nainawatee H.S. (2002) Plant flavanoids: signals to legume nodulation and soil microorganisms. Journal of Plant Biochemistry and Biotechnology 10, 1–10.

    Google Scholar 

  • Joner E. and Leyval C. (2003) Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza. Environmental Science and Technology 37, 2371–2375.

    Article  CAS  Google Scholar 

  • Jones D.L., Hodge A. and Kuzyakov Y. (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytologist 163, 459–480.

    Article  CAS  Google Scholar 

  • Ka J.O., Holben W.E. and Tiedje J.M. (1994) Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated fields. Applied and Environmental Microbiology 60, 1106–1115.

    CAS  Google Scholar 

  • Kamagata Y., Fulthorpe R.R., Tamura K., Takami H., Forney L.J. and Tiedje J.M. (1997) Pristine environments harbour a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Applied and Environmental Microbiology 63, 2266–2272.

    CAS  Google Scholar 

  • Kandeler E., Marschner P., Tscherko D., Gahoonia T.S. and Nielsen N.E. (2002) Microbial community composition and functional diversity in the rhizosphere of maize. Plant and Soil 238, 301–312.

    Article  CAS  Google Scholar 

  • Kitagawa W., Takami S., Miyauchi K., Masai E., Kamagata Y., Tiedje J.M. and Fukuda M. (2002) Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. Journal of Bacteriology 184, 509–518.

    Article  CAS  Google Scholar 

  • Leigh M.B., Fletcher J.S., Fu X. and Schmitz F.J. (2002) Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environmental Science and Technology 36, 1579–1583.

    Article  CAS  Google Scholar 

  • Leveau J.H.J. and van der Meer J.R. (1996) The tfdR gene product can successfully take over the role of the insertion element-inactivated tfdT protein as a transcritpional activator of the tfdCDEF gene cluster, which encodes chlorocatechol degradation in Ralstonia eutropha JMP134(pJP4). Journal of Bacteriology 178, 6824–6832.

    CAS  Google Scholar 

  • Loh J. and Stacey G. (2003) Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Applied and Environmental Microbiology 69, 10–17.

    Article  CAS  Google Scholar 

  • McGowan C., Fulthorpe R., Wright A. and Tiedje J.M. (1998) Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenxyacetic acid degraders. Applied and Environmental Microbiology 64, 4089–4092.

    CAS  Google Scholar 

  • Meharg A.A. and Killham K. (1995) Loss of exudates from the roots of perennial ryegrass inoculated with a range of microorganisms. Plant and Soil 170, 345–349.

    Article  CAS  Google Scholar 

  • Mihelcic J.R., Mitzell R.J. and Stapleton J.M. (1993) Bioavailability of sorbed and separate phase chemicals. Biodegradation 4, 141–153.

    Article  CAS  Google Scholar 

  • Nguyen C. (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23, 375–396.

    Article  CAS  Google Scholar 

  • Ogawa N., McFall S.M., Klem T.J., Miyashita K. and Chakrabarty A.M. (1999) Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9. Journal of Bacteriology 181, 6697–6705.

    CAS  Google Scholar 

  • Parke D. and Ornston L.N. (1986) Enzymes of the β-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp. Journal of Bacteriology 165, 288–292.

    CAS  Google Scholar 

  • Paterson E., Hall J., Rattray E., Griffiths B., Ritz K. and Killham K. (1997) Effects of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Global Change Biology 3, 363–377.

    Article  Google Scholar 

  • Poh R.P.-C., Smith A.R.W. and Bruce I.J. (2002) Complete characterisation of Tn5530 from Burkholderia cepacia strain 2a (pIJB1) and studies of 2,4-dichlorophenoxyacetate uptake by the organism. Plasmid 48, 1–12.

    Article  CAS  Google Scholar 

  • Ramey B.E., Koutsoudis M., von Bodman S.B. and Fuqua C. (2004) Biofilm formation in plant-microbe associations. Current Opinion in Microbiology 7, 602–609.

    Article  CAS  Google Scholar 

  • Rao J.R. and Cooper J.E. (1994) Rhizobia catabolize nod- gene-inducing flavonoids via C-ring fission mechanisms. Journal of Bacteriology 176, 5409–5413.

    CAS  Google Scholar 

  • Rao J.R., Sharma N.D., Hamilton J.T.G., Boyd D.R. and Cooper J.E. (1991) Biotransformation of the pentahydroxy flavone quercetin by Rhizobium loti and Bradyrhizobium strains (Lotus). Applied and Environmental Microbiology 57, 1563–1565.

    CAS  Google Scholar 

  • Read D.B., Bengough A.G., Gregory P.J., Crawford J.W., Robinson D., Scrimgeour C.M., Young I.M., Zhang K. and Zhang X. (2003) Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytologist 157, 315–326.

    Article  CAS  Google Scholar 

  • Read D.B. and Gregory P.J. (1997) Surface tension and viscosity of axenic maize and lupin root mucilages. New Phytologist 137, 623–628.

    Article  Google Scholar 

  • Recourt K., Schripsema J., Kijne J.W., van Brussel A.A.N. and Lugtenberg B.J.J. (1991) Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavanones and chalcones. Plant Molecular Biology 16, 841–852.

    Article  CAS  Google Scholar 

  • Recourt K., van Tune A.J., Mur L.A., van Brussel A.A.N., Lugtenberg B.J.J. and Kijne J.W. (1992) Activation of flavonoid biosynthesis in roots of Vicia sativa subsp. nigra by inoculation with Rhizobium leguminosarum biovar viciae. Plant Molecular Biology 19, 411–420.

    Article  CAS  Google Scholar 

  • Rentz J.A., Alvarez J.J. and Schnoor J.L. (2004) Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environmental Microbiology 6, 574–583.

    Article  Google Scholar 

  • Robinson G.K. and Lenn M.J. (1994) The bioremediation of polychlorinated biphenyls (PCBs): problems and perspectives. Biotechnology and Genetic Engineering Reviews 12, 139–188.

    CAS  Google Scholar 

  • Sandmann E.R.I.C. and Loos M.A. (1984) Enumeration of 2,4-D-degrading microorganisms in soils and crop plant rhizospheres using indicator media: high populations associated with sugarcane (Saccharum officinarum). Chemosphere 13, 1073–1084.

    Article  CAS  Google Scholar 

  • Schellenberg K., Leuenberger C. and Schwarzenbach R.P. (1984) Sorption of chlorinated phenols by natural sediments and aquifer materials. Environmental Science and Technology 18, 652–657.

    Article  CAS  Google Scholar 

  • Schwieger F. and Tebbe C.C. (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Applied and Environmental Microbiology 64, 4870–4876.

    CAS  Google Scholar 

  • Shaw L.J., Beaton Y., Glover L.A., Killham K., Osborn D. and Meharg A.A. (2000) Bioavailability of 2,4-dichlorophenol associated with water-soluble humic material. Environmental Science and Technology 34, 4721–4726.

    Article  CAS  Google Scholar 

  • Shaw L.J. and Burns R.G. (2003) Biodegradation of organic pollutants in the rhizosphere. Advances in Applied Microbiology 53, 1–60.

    CAS  Google Scholar 

  • Shaw L.J. and Burns R.G. (2004) Enhanced mineralisation of [U-14C]2,4-dichlorophenoxyacetic acid in soil from the rhizosphere of Trifolium pratense. Applied and Environmental Microbiology 70, 4766–4774.

    Article  CAS  Google Scholar 

  • Shaw L.J. and Burns R.G. (2005) Rhizodeposition and the enhanced mineralization of 2,4-dichlorophenoxyacetic acid in soil from the Trifolium pratense rhizosphere. Environmental Microbiology 7, 191–202.

    Article  CAS  Google Scholar 

  • Shingler V. (2003) Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environmental Microbiology 5, 1226–1241.

    Article  CAS  Google Scholar 

  • Siciliano S.D. and Germida J.J. (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environmental reviews 6, 65–79.

    Article  CAS  Google Scholar 

  • Singer A.C., Crowley D. and Thompson I. (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends in Biotechnology 21, 123–130.

    Article  CAS  Google Scholar 

  • Singer A.C., Thompson I. and Bailey M. (2004) The tritrophic trinity: a source of pollutant-degrading enzymes and its implications for phytoremediation. Current Opinion in Microbiology 7, 239–244.

    Article  CAS  Google Scholar 

  • Sorensen S.J. and Jensen L.E. (1998) Transfer of plasmid RP4 in the spermosphere and rhizosphere of barley seedling. Antonie van Leeuwenhoek 73, 69–77.

    Article  CAS  Google Scholar 

  • Springael D. and Top E. (2004) Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies. Trends in Microbiology 12, 53–58.

    Article  CAS  Google Scholar 

  • Streber W.R., Timmis K.N. and Zenk M.H. (1987) Analysis, cloning and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. Journal of Bacteriology 158, 2950–2955.

    Google Scholar 

  • Toal M.E., Yeomans C., Killham K. and Meharg A.A. (2000) A review of rhizosphere carbon flow modelling. Plant and Soil 222, 263–281.

    Article  CAS  Google Scholar 

  • Top E.M., van Daele P., De Saeyer N. and Forney L.J. (1998) Enhancement of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil by dissemination of catabolic plasmids. Antonie van Leeuwenhoek 73, 87–94.

    Article  CAS  Google Scholar 

  • Tropel D. and van der Meer J.R. (2004) Bacterial Transcriptional Regulators for Degradation Pathways of Aromatic Compounds. Microbiology and Molecular Biology Reviews 68, 474–500.

    Article  CAS  Google Scholar 

  • Troxler J., Azelvandre P., Zala M., Defago G. and Haas D. (1997) Conjugative transfer of chromosomal genes between fluorescent pseudomonads in the rhizosphere of wheat. Applied and Environmental Microbiology 63, 213–219.

    CAS  Google Scholar 

  • Uren N.C. (2001) Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface (R. Pinton, Z. Varanini, and P. Nannipieri, Eds.), pp. 19–40. Marcel Dekker, Inc, New York.

    Google Scholar 

  • van Elsas J.D. and Bailey M. J. (2002) The ecology of transfer of mobile genetic elements. FEMS Microbiology Ecology 42, 187–197.

    Article  Google Scholar 

  • Vedler E., Koiv V. and Heinaru A. (2000) TfdR, the LysR-type transcriptional activator, is responsible for the activation of the tfdCB operon of Pseudomonas putida 2,4-dichlorophenoxyacetic acid degradative plasmid pEST4011. Gene 245, 161–168.

    Article  CAS  Google Scholar 

  • Vedler E., Vahter M. and Heinaru A. (2004) The completely sequenced plasmid pEST4011 contains a novel IncP backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. Journal of Bacteriology 186, 7161–7174.

    Article  CAS  Google Scholar 

  • Walker T., Bias H., Grotewold E. and Vivanco J. (2003) Root exudation and rhizosphere biology. Plant Physiology 132, 44–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Shaw, L.J., Burns, R.G. (2007). INFLUENCE OF THE RHIZOSPHERE ON THE BIODEGRADATION OF ORGANIC XENOBIOTICS – A CASE STUDY WITH 2,4-DICHLOROPHENOXYACETIC ACID. In: Heipieper, H.J. (eds) Bioremediation of Soils Contaminated with Aromatic Compounds. NATO Science Series, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5693-2_2

Download citation

Publish with us

Policies and ethics