Advertisement

SHEDDING LIGHT ON THE BIOAVAILABILITY OF ORGANIC POLLUTANTS

Conference paper
  • 913 Downloads
Part of the NATO Science Series book series (NAIV, volume 76)

Abstract

A new solvent-responsive gene locus, designated sepABC and a divergently transcribed sepR, (sep for solvent efflux pump), was found downstream of the two-component todST signal transduction phosphorelay system that regulates toluene degradation (the tod pathway) in Pseudomonas putida F1 (PpF1). We have made use of this new property, a non-catabolic promoter, in combination with a luxCDABE gene cassette to create a second generation whole-cell bioluminescent biosensor, of name PpF1G4. The response of this new biosensor to a wide range of aromatic hydrocarbons as well as a number of ubiquitous multicomponent non-aqueous phase liquids (NAPLs), including gasoline, JP-4 jet fuel, diesel, coal tar creosote and three varieties of crude oil was demonstrated. PpF1G4 was also assessed as a new environmental tool for a direct measurement of the bioavailability of hydrophobic organic compounds (HOCs) partitioned into surfactant micelles. In general, the results of this study demonstrated the utility of a novel bioreporter system capable of direct measurement of bioavailability of HOCs by the judicious choice of non-ionic surfactants.

Keywords

Critical Micelle Concentration Nonionic Surfactant Pseudomonas Putida Micellar Phase Bioluminescence Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Alexander M. (1994) Biodegradation and bioremediation. Academic Press, San Diego.Google Scholar
  2. Alexander M. (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science and Technology 34, 4259–4265.CrossRefGoogle Scholar
  3. Applegate B.M., Kelly C., Lackey L., McPherson J., Kehrmeyer S., Menn F.-M., Bienkowski, P., and Sayler G. (1997) Pseudomonas putida B2: a tod-lux bioluminescent reporroter for toluene and trichloroethylene cometabolism. Journal of Industrial Microbiology and Biotechnology. 18, 4–9.CrossRefGoogle Scholar
  4. Applegate B.M., Kehrmeyer S. R., and Sayler G. S. (1998) A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethylbenzene and xylene (BTEX) sensing. Applied and Environmental Microbiology. 64, 2730–2735.Google Scholar
  5. Aronstein B.N., and Alexander M. (1992) Surfactants at low concentrations stimulate the biodegradation of sorbed hydrocarbons in samples of aquifer sands and soil slurries. Environmental Toxicology and Chemistry. 11, 1227–1233.Google Scholar
  6. Bosma T.N.P., Middledorp P.J.M., Schraa G., and Zehnder A.J.B. (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environmental Science and Technology 31, 248–252.CrossRefGoogle Scholar
  7. Breuil C., and Kushner D.J. (1980) Effects of lipids, fatty acids and other detergents on bacterial utilization of hexadecane. Canadian Journal of Microbiology. 26, 223–231.CrossRefGoogle Scholar
  8. Burlage R.S., Palumbo A.V., Heitzer A., and Sayler G. (1994) Bioluminescent reporter bacteria detect contaminants in soil bacteria. Applied Biochemsitry and Biotechnology. 45/46, 731–740.Google Scholar
  9. Daunert S., Barrett G., Feliciano J.S., Shetty R.S., Shrestha S., and Smith-Spencer W. (2000) Genetically-engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chemical Reviews 100, 2705–2738.CrossRefGoogle Scholar
  10. Eaton R.W. (1996) p-Cumate catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA carrying the cmt operon. Journal of Bacteriology. 178, 1351–1362.Google Scholar
  11. Eaton R.W. (1997) p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. Journal of Bacteriology. 179, 3171–3180.Google Scholar
  12. Florence AT, Tucker IG, Walters KA. 1984. Interactions of nonionic polyoxyethylene alkyl and aryl ethers with membranes and other biological systems. In: Rosen MJ, editor. Structure/performance relationships in surfactants. Washington, D.C.: ACS Symposium Series.Google Scholar
  13. Gibson D.T., Zylstra G.J., and Chauhan S. (1990) Biotransformations catalyzed by toluene dioxygenase from Pseudomonas putida F1. In Pseudomonas: Biotransformation, Pathogenesis and Evolving Biotechnology. Silver S., Chakrabarty A.M., Iglewski B. and Kaplan S. (eds). Washington, DC: Amercian Society for Microbiology Press, pp. 121–132.Google Scholar
  14. Glover R.E., Smith R.R., Jones M. V., Jackson S.K., and Rowlands C.C. (1999) An EPR investigation of surfactant action on bacterial membranes. FEMS Microbiology Letters 111, 57–62.CrossRefGoogle Scholar
  15. Guha S., and Jaffe P.R. 1996a. Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants. Environmental Science and Technology 30, 605–611.CrossRefGoogle Scholar
  16. Guha S., and Jaffe P.R. 1996b. Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environmental Science and Technology 30, 1382–1391.CrossRefGoogle Scholar
  17. Guha S, Jaffe P.R., and Peters C.A. (1998) Bioavailability of mixtures of PAHs partitioned into the micellar phase of a nonionic surfactant. Environmental Science and Technology 32, 2317–2324.CrossRefGoogle Scholar
  18. Hay A.G., Rice J.F., Applegate B.M., Bright N.G. and Sayler G.S. (2000) A bioluminescent whole-cell reporter for detection of 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol in soils. Applied and Environemntal Microbiology. 66, 4589–4594.CrossRefGoogle Scholar
  19. Heitzer A., Applegate B., Kehrmeyer S., Pinkart H., Webb O.F., Phelps T.J., White D.C., and Sayler G. S. (1998) Physiological considerations of environmental applications of lux reporter fusions. Journal of Microbiological Methods 33, 45–57.CrossRefGoogle Scholar
  20. Helenius A., Simons K. (1975) Solubilization of membranes by detergents. Biochimica Biophysica Acta 415, 29–79.Google Scholar
  21. Johnson J.M., and Church G.M. (1999) Alignment and structure prediction of divergent protein families. Periplasmic and outer membrane proteins of bacterial efflux pumps. Journal of Molecular Biology. 287, 695–715.CrossRefGoogle Scholar
  22. Keane A. (2003) Assessing the bioavailability of organic pollutants in surfactant solutions using a novel bioluminescent biosensor. Ph.D. Thesis. McGill University.Google Scholar
  23. Keane A., Phoenix P., Ghoshal S., and Lau P. C. K. (2002) Exposing culprit organic pollutants: A review. Journal of Microbiological Methods 49, 103–119.CrossRefGoogle Scholar
  24. Kieboom J., Dennis J.J., de Bont J.A.M., and Zylstra G.J. (1998) Identification and molecular characterization of an efflux pump of organic solvents by Pseudomonas putida S12 solvent toleranace. Journal of Biological Chemistry 273, 85–91.CrossRefGoogle Scholar
  25. Kim M.N., Park H.W., Lim W.K., and Shin H.J. (2005) Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. Journal of Microbiological Methods 60, 235–245.CrossRefGoogle Scholar
  26. King J.M.H., DiGrazia P.M., Applegate B.M., Burlage R., Sanseverino J., Dunbar, P., Larimer, F., and Sayler G.S. (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and technology. Science 249, 778–781.CrossRefGoogle Scholar
  27. Lau P.C.K., Wang Y., Patel A., Labbe D., Bergeron H., Brousseau R., Konishi Y., and Rawlings, M. (1997) A bacterial basic leucine zipper histidine kinase regulating toluene degradation. Proceedings of the National Academy of Science USA 94, 1453–1458.CrossRefGoogle Scholar
  28. Layton A.C., Muccini M., Ghosh M.M., and Sayler G.S. (1998) Construction of a bioluminesccent reporter strain to detect polychlorinated biphenyls. Applied and Environmental Microbiology. 64, 5023–5026.Google Scholar
  29. Lichtenberg D., Robson R.J., and Dennis E.A. (1983) Solubilization of phospholipids by detergents. Structural and kinetic aspects. Biochimica Biophysica Acta 737, 285–304.Google Scholar
  30. Mikolosko J., Bobyk K., Zgurskaya H.I., and Ghosh P. (2006) Conformational flexibility in the multidrug efflux system protein AcrA. Structure 14, 577–587.CrossRefGoogle Scholar
  31. Mulder H., Wassink G.R., Breure A.M., van Andel J. G., and Rulkens W.H. (1998) Effect of nonionic surfactants on naphthalene dissolution and biodegradation. Biotechnology and Bioengineering 60, 397–407.CrossRefGoogle Scholar
  32. Palleroni N.J., and Moore E.R.B. (2004) Taxonomy of pseudomonads: experimental approaches. p3–44. In J.L. Ramos (ed) Pseudomonas: Genomics, life style and molecular architecture. Kluver Academics/Plenum Publications. New York.Google Scholar
  33. Parales R.E., Ditty J.L., and Harwood C.S. (2000) Toluene-degrading bacteria are chemotactic towards tehe environmental pollutants benzene, toluene and trichloroethylene. Appplied and Environmental Microbiology 66, 4098–4104.CrossRefGoogle Scholar
  34. Patel A., Wang Y., Hasegawa Y., and Lau P. C. K. (1997) Cloning, purification characterization and mode of action of CymR, a transcriptional represser of the cym operon in Pseudomonas putida F1. In 97th General meeting of the ASM. Washington DC: Americal Society for Microbiology, Abstract Q248, 497.Google Scholar
  35. Phoenix P., Keane A., Patel A., Bergeron H., Ghoshal S., Lau P. C. K. (2003) Characterization of a new solvent-responsive gene locus in Pseudomonas putida F1 and its functionalization as a versatile biosensor. Environmental Microbiology 5, 1309–1327.CrossRefGoogle Scholar
  36. Poole K. (2001) Multidrug resistance in Gram-negative bacteria. Current Opinion in Microbiology. 4, 500–508.CrossRefGoogle Scholar
  37. Ramaswami, A. and Luthy, R. G. (1997). Mass transfer and bioavailability of PAH compounds in coal tar NAPL-slurry systems. 1. Model development Environmental. Science and. Technology 31, 2260–2267.CrossRefGoogle Scholar
  38. Ripp S., Daumer R.A., McKnight T., Levine L.H., Garland J.L., Simpson M.L., and Sayler G.S. (2003) Bioluminescent bioreporter integrated-circuit sensing of microbial volatile organic compounds. Journal of Industrial Microbiology and Biotechnology 30, 636–642.CrossRefGoogle Scholar
  39. Rojas A., Duque E., Mosqueda G., Golden G., Hurtado A., Ramos J.L. and Segura A. (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-TTE. Journal of Bacteriology 183, 3967–3973.CrossRefGoogle Scholar
  40. Selifonova O. V., and Eaton R.W. (1996) Use of an ifb-lux fusion to study regulation of the isopropylbenzene catabolism operon of Pseudomoans putida RE204 and to detect hydrophobic pollutants in the environment. Applied and Environmental Microbiology 62, 778–783.Google Scholar
  41. Semple K.T., Morris A.W.J., and Paton G.I. (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. European Journal of Soil Science 54, 809–818.CrossRefGoogle Scholar
  42. Semple K.T., Doick, K.J., Jones K.C., Burauel P., Craven A., and Harms H. (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science and Technology 38, 228A–231A.CrossRefGoogle Scholar
  43. Shitashiro M., Tanaka, H., Hong C.S., Kuroda A., Takiguchi N., Ohtake H., and Kato J. (2005) Identification of chemosensory proteins for trichloroethylene in Pseudomonas aeruginosa. Journal of Bioscience and Bioengineeering 99, 396–402.CrossRefGoogle Scholar
  44. Tiehm A. (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Applied and Environmental Microbiology 60, 258–263.Google Scholar
  45. Tizzard A.C., Bergsma J.H., and Lloyd-Jones G. (2006) A resazurin-based biosensor for organic pollutants. Biosensors and Bioelectronics. Feb 15 [Epublication ahead of print]Google Scholar
  46. van der Meer, J.R. (2006) Analytics with engineered bacterial bioreporter strains and systems. Current Opinion in Biotechnology 17, 1–3.CrossRefGoogle Scholar
  47. van der Meer J.R., Tropel D., and Jaspers M. (2004) Illuminating the detection chain of bacterial bioreporters. Environmental Microbiology 6, 1005–1020.CrossRefGoogle Scholar
  48. Volkering F., Breure A.M., van Andel J.G., and Rulkens W.H. (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology 61, 1699–1705.Google Scholar
  49. Volkering F., Breure A.M., and Rulkens W.H. (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8, 401–417.CrossRefGoogle Scholar
  50. Wang Y., Rawlings M., Gibson D.T., Labbe D., Bergeron H., Brousseau R., and Lau P.C.K. (1995) Identification of a membrane protein and a truncated LysR-type regulator associated with the toluene degradation pathway in Pseudomonas putida F1. Molecular and General Genetics 246, 570–579.CrossRefGoogle Scholar
  51. Zhang Y., and Miller R.M. (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Applied and Environemental Microbiology. 61, 2247–2251.Google Scholar
  52. Zylstra G. J., and Gibson D.T. (1989) Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. Journal of Biological Chemistry 264, 14940–14946.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of Civil EngineeringMcGill UniversityMontreal, QuebecCanada
  2. 2.Biotechnology Research InstituteNational Research Council CanadaMontreal, QuebecCanada

Personalised recommendations