Advertisement

Bioinformatics: A New Approach for the Challenges of Molecular Biology

  • Arlindo L. Oliveira
  • Ana T. Freitas
  • Isabel Sá-Correia
Conference paper

Abstract

We describe the research being undertaken by the ALGOS/KDBIO and Biological Sciences groups of Instituto Superior Técnico on the field of bioinformatics and computational biology, with emphasis on the efforts under way to develop new approaches, methods and algorithms for the determination of gene regulatory networks. We put the field in perspective by first looking at recent developments in the field of bioinformatics, and how these developments contributed to the advance of science. We then describe the approach that is being followed, based on the development of algorithms and information systems for the problems of motif detection, gene expression analysis and inference of gene regulatory networks. We conclude by pointing out possible directions for future research in the fields of systems biology and synthetic biology, two critical areas for the development of science in the coming years.

Key words

Bioinformatics Molecular Biology Biotechnology Regulatory Networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Watson and F. Crick, A structure for Deoxyribose Nucleic Acid, Nature, 171, pp. 737:738, 1953.Google Scholar
  2. 2.
    R. Staden, A new computer method for the storage and manipulation of DNA gel reading data Nucleic Acids Research, 25;8(16), pp. 3673:94, 1980.Google Scholar
  3. 3.
    R. A. Gibbs, R.A. Pressing ahead with human genome sequencing. Nature Genetics,. 11, pp. 121:125, 1995.CrossRefGoogle Scholar
  4. 4.
    Commission on Life Sciences, National Research Council. Mapping and Sequencing the Human Genome, National Academy Press: Washington, D.C., 1988.Google Scholar
  5. 5.
    R. D. Fleischmann, A. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd, Science 269(5223), pp. 496:512, 1995.CrossRefGoogle Scholar
  6. 6.
    Goffeau, B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Gali-bert, J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Muraka-mi, P. Philippsen, H. Tettelin, S. G. Oliver. Life with 6000 genes. Science. 274(546), pp. 563:567, 1996.Google Scholar
  7. 7.
    Blattner et al.. The complete genome sequence of Escherichia coli K-12, Science, 277(5331), pp. 1453:1474, 1997.CrossRefGoogle Scholar
  8. 8.
    The C. elegans Sequencing Consortium, Genome Sequence of the Nematode C. elegans: A Platform for Investigating Biology, Science 282(5396), pp. 2012:2018, 1998.Google Scholar
  9. 9.
    The Arabidopsis Initiative, Analysis of the genome sequence of the flowering plant Arabi-dopsis thaliana, Nature 408, pp. 796:815 2000.Google Scholar
  10. 10.
    M. Adams et al. Science, The Genome Sequence of Drosophila melanogaster, Science 287(5461), pp. 2185:2195, 2000.CrossRefGoogle Scholar
  11. 11.
    J. C. Venter et al, The Sequence of the Human Genome, Science, 291(5507), pp. 1304:1351, 2001.CrossRefGoogle Scholar
  12. 12.
    International Human Genome Sequencing Consortium, Initial sequencing and analysis of the human genome, Nature 409, pp. 860:921, 2001.Google Scholar
  13. 13.
    J. L. Weber and E. W. Myers, Human Whole-Genome Shotgun Sequencing, Genome Re-search, 7(5), pp. 401:409, 1997.Google Scholar
  14. 14.
    S. B. Needleman and C. D. Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48, pp. 443:453, 1970.CrossRefGoogle Scholar
  15. 15.
    T. F. Smith and M. S. Waterman, Identification of Common Molecular Subsequences. Journal of Molecular Biology 147, pp. 195:197, 1981.CrossRefGoogle Scholar
  16. 16.
    S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment search tool Journal of Molecular Biology, 215(3):403:10, 1990.Google Scholar
  17. 17.
    W. R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences, 85, pp. 2444:2448, 1988.CrossRefGoogle Scholar
  18. 18.
    E. Uberbacher and R. Mural. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Genetics, 88, pp. 11261:11265, 1991.Google Scholar
  19. 19.
    M. Zhang. Identification of protein coding regions in human genome by quadratic discriminant analysis, Genetics, 94, pp. 565:568, 1997.Google Scholar
  20. 20.
    C. Burge and S. Karlin. Prediction of complete gene structures in human genomic DNA. Journal of Molecular Biology, 268, pp. 78:94, 1997.CrossRefGoogle Scholar
  21. 21.
    R. Guigó, S. Knudsen, N. Drake and T. F. Smith. Prediction of gene structure. Journal of Molecular Biology, 226, pp. 141:157, 1992.CrossRefGoogle Scholar
  22. 22.
    P. Monteiro, A. Ramalho, A. T. Freitas and A. L. Oliveira, DECIDE A Gene Finding Evaluation Tool, Proceedings of BKDB2005-Bioinformatics: Knowledge Discovery in Biology, pp. 68:72, 2005.Google Scholar
  23. 23.
    M. Y. Galperin, The Molecular Biology Database Collection: 2006 update Nucleic Acids Research, 34: pp. D3:D5, 2006.CrossRefGoogle Scholar
  24. 24.
    J. M. Cherry, C. Adler, C. A. Ball, S. A. Chervitz, S. S. Dwight, E. T. Hester, Y. Jia, G. Juvik, T. Roe, M. Schroeder, S. Weng and D. Botstein, SGD: Saccharomyces Genome Database. Nucleic Acids Research., 26, pp. 73:79, 1998.CrossRefGoogle Scholar
  25. 25.
    U. Güldener, M. Münsterkötter, G. N. Kastenmüller, J. Strack, C. Lemer, J. Richelles, S. J. Wodak, J. García-Martínez, J. E. Pérez-Ortín, H. Michael, A. Kaps, E. Talla, B. Dujon, B. André, J. L. Souciet, J. D. Montigny, E. Bon, C. Gaillardin and H. W. Mewes CYGD: the comprehensive yeast genome database, Nucleic Acids Research, 33, pp. D364:D368, 2005.Google Scholar
  26. 26.
    M. Riffle, L. Malmström and T. N. Davis, The yeast resource center public data repository, Nucleic Acids Research, 33, D378–D382, 2005.CrossRefGoogle Scholar
  27. 27.
    J. van Helden, Regulatory sequence analysis tools. Nucleic Acids Research, 31, pp. 3593:3596, 2003.CrossRefGoogle Scholar
  28. 28.
    M. C. Teixeira, P. Monteiro, P. Jain, S. Tenreiro, A. R. Fernandes, N. P. Mira, M. Alenquer, A. T. Freitas, A. L. Oliveira and I. Sá-Correia, The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae, Nucleic Acids Research, 34, pp. D446:D451, 2006.CrossRefGoogle Scholar
  29. 29.
    M. F. Sagot. Spelling approximate repeated or common motifs using a suffix tree, Procee-dings of Latin’98, LNCS 1380, pp. 111:127, 1998.Google Scholar
  30. 30.
    J. van Helden, A. F. Rios and J. Collado-Vides. Discovering regulatory elements in noncoding sequences by analysis of spaced dyads. Nucleic Acids Research, 28, pp. 1808:1818, 2000.Google Scholar
  31. 31.
    M. Carvalho, A. T. Freitas, A. L. Oliveira and M. F. Sagot, An efficient algorithm for the identification of structured motifs in DNA promoter sequences, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(2), 2006.Google Scholar
  32. 32.
    M. Carvalho, A. T. Freitas, A. L. Oliveira and M. F. Sagot, A highly scalable algorithm for the extraction of cis-regulatory regions, Proceedings of the 3rd Asia Pacific Bioinformatics Conference, pp. 273:282, 2005.Google Scholar
  33. 33.
    M. Carvalho, A. T. Freitas, A. L. Oliveira and M. F. Sagot, A parallel algorithm for the extraction of structured motifs, Proceedings of the 19th ACM Symposium on Applied Computing, pp. 147:153, 2004.Google Scholar
  34. 34.
    J. L. DeRisi, V. R. Iyer, P. O. Brown, Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 278(5338). pp. 680–686, 1997.CrossRefGoogle Scholar
  35. 35.
    S. le Crom, F. Devaux, C. Jacq, P. Marc, yMGV: helping biologists with yeast microarray data mining, Nucleic Acids Research, 30, pp. 76:9, 2002.CrossRefGoogle Scholar
  36. 36.
    J. E. Celis, M. Kruhøffer, I. Gromova, C. Frederiksen, M. Østergaard, T. Thykjaer, P. Gromov, J. Yu, H. Pálsdóttir, N. Magnusson and T. F. Ørntoft, Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteo-mics. FEBS Letters 480, pp. 2:16, 2000.CrossRefGoogle Scholar
  37. 37.
    Y. Cheng and G. M. Church, Biclustering of Expression Data, Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 93:103, 2000.Google Scholar
  38. 38.
    S. C. Madeira and A. L. Oliveira, Biclustering algorithms for biological data analysis: A survey. IEEE/ACM Transactions on Computational Biology and Bioinformics 1(1), pp. 24:45, 2004.Google Scholar
  39. 39.
    S. C. Madeira and A. L. Oliveira, A Linear Time Biclustering Algorithm for Time Series Gene Expression Data, Proceedings of the 5th Workshop on Algorithms in Bioinformatics, LNCS 3692, pp. 39:52, 2005.Google Scholar
  40. 40.
    X. Zhou, X. Wang, R. Pal, I. Ivanov, M. Bittner and E. Dougherty A Bayesian connectivi-ty based approach to constructing probabilistic gene regulatory networks. Bioinformatics, 20 pp. 2918:2927, 2004.Google Scholar
  41. 41.
    K. Kyoda, K. Baba, S. Onami S and H. Kitano, DBRF-MEGN method: an algorithm for deducing minimum equivalent gene networks from large-scale gene expression profiles of gene deletion mutants, Bioinformatics. 20, pp. 2662:2675, 2004.CrossRefGoogle Scholar
  42. 42.
    T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M. Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L. Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J. B. Tagne, T. L. Volkert, E. Fraenkel, D. K. Gifford and R. A. Young, Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, pp. 799:804, 2002.Google Scholar
  43. 43.
    J. Ihmels, S. Bergmann and N. Barkai, Defining transcription modules using large-scale gene expression data, Bioinformatics, 20, pp. 1993:2003, 2004.CrossRefGoogle Scholar
  44. 44.
    M. Zou and S. D. Conzen, A new dynamic Bayesian network (DBN) approach for identif-ying gene regulatory networks from time course microarray data. Bioinformatics, 21(1), pp. 71:79, 2005.CrossRefGoogle Scholar
  45. 45.
    S. Tenreiro, A. R. Fernandes and I. Sá-Correia Transcriptional activation of FLR1 gene during Saccharomyces cerevisiae adaptation to growth with benomyl: role of Yap1p and Pdr3p. Biochemical and Biophysical Research Communications, 280, pp. 216:222, 2001.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Arlindo L. Oliveira
    • 1
  • Ana T. Freitas
    • 1
  • Isabel Sá-Correia
    • 2
  1. 1.IST/INESC-IDUniversidade Técnica de LisboaLisboaPortugal
  2. 2.IST/CEBQUniversidade Técnica de LisboaLisboaPortugal

Personalised recommendations