On the Stabilizing Properties of Energy-Momentum Integrators and Coordinate Projections for Constrained Mechanical Systems

  • Juan C. García Orden
  • Daniel Dopico Dopico
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 4)

Abstract

Several considerations are important if we try to carry out fast and precise simulations in multibody dynamics: the choice of modeling coordinates, the choice of dynamical formulations and the numerical integration scheme along with the numerical implementation. All these matters are very important in order to decide whether a specific method is good or not for a particular purpose.

Keywords

Manifold Cardenal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Uri M. Ascher. Stabilization of invariants of discretized differential systems. Numerical Algorithms, 14:1–23, 1997.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods in Applied Mechanics and Engineering, 1:1–16, 1972.CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    E. Bayo and A. Avello. Singularity-free augmented lagrangian algortihms for constrained multibody dynamics. Nonlinear Dynamics, 9:113–130, 1996.CrossRefMathSciNetGoogle Scholar
  4. 4.
    E. Bayo, J. García de Jalón, and M.A. Serna. A modified lagrangian formulation for the dynamic analysis of constrained mechanical systems. Computer Methods in Applied Mechanics and Engineering, 71:183–195, 1988.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    E. Bayo and R. Ledesma. Augmented lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dynamics, 9:113–130, 1996.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 2003.Google Scholar
  7. 7.
    Marco Borri, Lorezo Trainelli, and Alessandro Croce. The embedded projection method: a general index reduction procedure for constrained system dynamics. Computer Methods in Applied Mechanics and Engineering, 2005.Google Scholar
  8. 8.
    K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Problems in Differential-Algebraic Numerical Solution of Initial-Value Problems in Differential-Algebraic. SIAM, 1996.Google Scholar
  9. 9.
    J. Cuadrado, J. Cardenal, P. Morer, and E. Bayo. Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and pararell computing environments. Multibody System Dynamics, 4:55–73, 2000.MATHCrossRefGoogle Scholar
  10. 10.
    J. Cuadrado, D. Dopico, M.A. Naya, and M. González. Penalty, semi-recursive and hybrid methods for mbs real-time dynamics in the context of structural integrators. Multibody System Dynamics, 12:117–132, 2004.MATHCrossRefGoogle Scholar
  11. 11.
    J. García de Jalón and E. Bayo. Kinematic and Dynamic Simulation of Multibody Systems. The Real Time Challenge. Springer-Verlag, 1994.Google Scholar
  12. 12.
    J. C. García Orden and J. M. Goicolea. Conserving properties in constrained dynamics of flexible multibody systems. Multibody System Dynamics, 4:225–244, 2000.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J. C. García Orden and D. Dopico Dopico. Energetic considerations of stabilization through coordinate projection in constrained mechanical systems. In preparation, 2006.Google Scholar
  14. 14.
    J. C. García Orden and J.M. Goicolea. An energy-momentum algorithm for flexible multibody systems with finite element techniques. Computer Assisted Mechanics and Engineering Sciences (Polish Academy of Sciences), 8:313–324, 2001.MATHGoogle Scholar
  15. 15.
    J. C. García Orden and R. Ortega. A conservative augmented lagrangian algorithm for the dynamics of constrained mechanical systems. In C.A. Mota Soares et al. (ed.), III European Conference on Computational Mechanics. Solids, Structures and Coupled Problems in Engineering, Lisboa, Portugal, 5–8 June 2006.Google Scholar
  16. 16.
    M. Geradin and D. Rixen. Mechanical Vibrations. Wiley, 1997.Google Scholar
  17. 17.
    J. M. Goicolea and J. C. García Orden. Dynamic analysis of rigid and deformable multibody systems with penalty methods and energy-momentum schemes. Computer Methods in Applied Mechanics and Engineering, 188(4):789–804, 2000.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    J. M. Goicolea and J. C. García Orden. Quadratic and higher-order constraints in energyconserving formulations in flexible multibody systems. Multibody System Dynamics, 7:3–29, 2002.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    O. González and J.C. Simó. On the stability of symplectic and energy-momentum algorithms for non linear hamiltonian systems with symmetry. Computer Methods in Applied Mechanics and Engineering, 1996.Google Scholar
  20. 20.
    E. Hairer and G. Wanner. Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems. Springer-Verlag, 1991.Google Scholar
  21. 21.
    T. A. Laursen. Computational Contact and Impact Mechanics. Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis. Springer, 2002.Google Scholar
  22. 22.
    M. Ortiz. A note on energy conservation and stability of nonlinear time-stepping algorithms. Computers and Structures, 24(1), 1986.Google Scholar
  23. 23.
    M. A. Serna, R. Avilés, and J. García de Jalón. Dynamics analysis of plane mechanisms with lower pairs in basic coordinates. Mechanism and Machine Theory, 17:397–403, 1982.CrossRefGoogle Scholar
  24. 24.
    J. C. Simó and N. Tarnow. The discrete energy-momentum method. conserving algorithms for nonlinear elastodynamics. ZAMP, 1992.Google Scholar
  25. 25.
    J. C. Simó and K.K. Wong. Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. International Journal of Numerical Methods in Engineering, 31:19–52, 1991.MATHCrossRefGoogle Scholar
  26. 26.
    A. M. Stuart and A.R. Humphries. Dynamical Systems and Numerical Analysis. Cambridge, 1996.Google Scholar
  27. 27.
    R. Wehage and E.J. Haugh. Generalized coordinate partitioning for dimension reduction in analysis of constrained mechanical systems. Journal of Mechanical Design, 104:247–255, 1982.CrossRefGoogle Scholar
  28. 28.
    P. Wriggers. Computational Contact Mechanics. Wiley, 2002.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Juan C. García Orden
    • 1
  • Daniel Dopico Dopico
    • 2
  1. 1.Grupo de Mecánica Computacional, Escuela Técnica Superior de Ingenieros de Caminos, Canales y PuertosUniversidad Politécnica de MadridMadridSpain
  2. 2.Laboratorio de IngenierÍa Mecánica, Escuela Politécnica SuperiorUniversidad de La CoruñaFerrolSpain

Personalised recommendations