Skip to main content

From Multibody Dynamics to Multidisciplinary Applications

  • Conference paper
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 4))

Abstract

With the increasing integration of mechanical, electrical and hydraulical components in advanced engineering systems, the integrated analysis of coupled physical phenomena and coupled technical systems gets more and more important. The methods and software tools of multibody dynamics are used successfully as integration platform for these multidisciplinary investigations. The present paper summarizes some multidisciplinary applications in the context of multibody dynamics and considers common problems and solution strategies. A novel modal multifield approach for coupled field effects like thermoelasticity is discussed in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.M. Tiller. Introduction to Physical Modeling with Modelica. Kluwer Academic Publishers, Boston/Dordrecht/London, 2001.

    Google Scholar 

  2. O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method. Butterworth Heinemann, Oxford, 5th edition, 2000.

    MATH  Google Scholar 

  3. A. Heckmann and M. Arnold. Flexible bodies with thermoelastic properties in multibody dynamics. In J.M. Goicolea, J. Cuadrado, and J.C. García Orden (eds), Proc. of Multibody Dynamics 2005 (ECCOMAS Thematic Conference), Madrid, Spain, 2005.

    Google Scholar 

  4. R.E. Roberson and R. Schwertassek. Dynamics of Multibody Systems. Springer-Verlag, Berlin/Heidelberg/New York, 1988.

    MATH  Google Scholar 

  5. E. Hairer and G. Wanner. Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin/Heidelberg/New York, 2nd edition, 1996.

    MATH  Google Scholar 

  6. W.O. Schiehlen (ed.). Multibody Systems Handbook. Springer-Verlag, Berlin/Heidelberg/New York, 1990.

    MATH  Google Scholar 

  7. W. Kortüm, W.O. Schiehlen, and M. Arnold. Software tools: From multibody system analysis to vehicle system dynamics. In H. Aref and J.W. Phillips (eds), Mechanics for a New Millennium, pages 225–238, Kluwer Academic Publishers, Dordrecht, 2001.

    Google Scholar 

  8. E. Eich-Soellner and C. Führer. Numerical Methods in Multibody Dynamics. Teubner-Verlag, Stuttgart, 1998.

    MATH  Google Scholar 

  9. M. Arnold. Simulation algorithms and software tools. Accepted for publication in G. Mastinu and M. Plöchl (eds), Road and Off-Road Vehicle System Dynamics Handbook. Taylor & Francis, London, 2006.

    Google Scholar 

  10. A.A. Shabana. Dynamics of Multibody Systems. Cambridge University Press, Cambridge, 2nd edition, 1998.

    MATH  Google Scholar 

  11. W. Kortüm, R.M. Goodall, and J.K. Hedrick. Mechatronics in ground transportation — Current trends and future possibilities. Annual Reviews in Control, 22:133–144, 1998.

    Article  Google Scholar 

  12. G. Hippmann. An algorithm for compliant contact between complexly shaped bodies. Multibody System Dynamics, 12:345–362, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Hoschek, P. Rentrop, and Y. Wagner. Network approach and differential-algebraic systems in technical applications. Surveys on Math. in Industry, 9:49–75, 1999.

    MATH  MathSciNet  Google Scholar 

  14. O. Vaculín, M. Valášek, and W.R. Krüger. Overview of coupling of multibody and control engineering tools. Vehicle System Dynamics, 41:415–429, 2004.

    Article  Google Scholar 

  15. O. Vaculín, M. Valášek, and W. Kortüm. Multi-objective semi-active truck suspension by spatial decomposition. In H. True (ed.), The Dynamics of Vehicles on Roads and on Tracks, Proc. of the 17th IAVSD Symposium, Denmark, 20–24 August 2001, pages 432–440. Supplement to Vehicle System Dynamics, Vol. 37, Swets & Zeitlinger, 2003.

    Google Scholar 

  16. R. Kübler and W. Schiehlen. Modular simulation in multibody system dynamics. Multibody System Dynamics, 4:107–127, 2000.

    Article  MATH  Google Scholar 

  17. M. Arnold and M. Günther. Preconditioned dynamic iteration for coupled differential-algebraic systems. BIT Numerical Mathematics, 41:1–25, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  18. O.C. Zienkiewicz. Coupled problems and their numerical solution. In R.W. Lewis, P. Bettess, and E. Hinton (eds), Numerical Methods in Coupled Systems. John Wiley & Sons, 1984.

    Google Scholar 

  19. B. Simeon. On Lagrange multipliers in flexible multibody dynamics. Comp. Meth. Appl. Mech. Eng., 2006 (in press). DOI: doi:10.1016/j.cma.2005.04.015.

    Google Scholar 

  20. O. Brüls, P. Duysinx, and J.C. Golinval. A unified finite element framework for the dynamic analysis of controlled flexible mechanisms. In J.M. Goicolea, J. Cuadrado, and J.C. García Orden (eds), Proc. of Multibody Dynamics 2005 (ECCOMAS Thematic Conference), Madrid, Spain, 2005.

    Google Scholar 

  21. A. Heckmann. The modal multifield approach in multibody dynamics. Fortschritt-Berichte VDI Reihe 20, Nr. 398. VDI-Verlag, Düsseldorf, 2005.

    Google Scholar 

  22. J.L.H. Nowinski. Theory of Thermoelasticity with Applications. Sijthof & Noordhoff International Publishers B.V., Alphen aan den Rijn, Netherlands, 1978.

    MATH  Google Scholar 

  23. B. Schweizer and J. Wauer. Atomistic explanation of the Gough-Joule effect. The European Physical Journal, B23:383–390, 2001.

    Google Scholar 

  24. H.J. Bathe. Finite Element Procedures. Prentice Hall, New Jersey, 1996.

    Google Scholar 

  25. M.A. Biot. Variational Principles in Heat Transfer. Oxford University Press, Oxford, UK, 1970.

    MATH  Google Scholar 

  26. B.A. Boley and J.H. Weiner. Theory of Thermal Stresses. Dover Publications, Mineola, New York, 1997.

    Google Scholar 

  27. R. Schwertassek and O. Wallrapp. Dynamik flexibler Mehrkörpersysteme. Vieweg, 1999.

    Google Scholar 

  28. W. Schiehlen. Multibody system dynamics: roots and perspectives. Multibody System Dynamics, 1:149–188, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Dietz. Vibration and Fatigue Analysis of Vehicle Systems using Component Modes. Fortschritt-Berichte VDI Reihe 12, Nr. 401. VDI-Verlag, Düsseldorf, 1999.

    Google Scholar 

  30. ANSYS© Release 7.1 Theory Reference. ANSYS, Inc., 2003.

    Google Scholar 

  31. SIMPACK Reference Manual, Release 8.5. INTEC GmbH, Wessling, Germany, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Arnold, M., Heckmann, A. (2007). From Multibody Dynamics to Multidisciplinary Applications. In: García Orden, J.C., Goicolea, J.M., Cuadrado, J. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5684-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5684-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5683-3

  • Online ISBN: 978-1-4020-5684-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics