Some remarks on the incomplete gamma function

  • Emin Özçağ
  • İnci Ege
  • Haşmet Gürçay
  • Biljana Jolevska-Tuneska
Conference paper

Abstract

The incomplete Gamma function γ(α, x) is defined for α > 0 and x ≥ 0 by
$$ \gamma \left( {\alpha ,x} \right) = \int_0^x {u^{\alpha - 1} e^{ - u} du} $$
and by using the recurrence formula
$$ \gamma \left( {\alpha + 1,x} \right) = \alpha \gamma \left( {\alpha ,x} \right) - x^\alpha e^{ - x} $$
the definition of γ(α, x) can be extended to negative, non integer value of α. Recently Fisher et al. [FJK03] defined γ(−m, x) for m = 0, 1, 2, . . . . In this paper we consider the derivatives of the incomplete Gamma function γ(α, x) and the derivatives of locally summable function γ(α, x +) = H(x)γ(α, x) for negative integers, where H(x) denotes the Heaviside function.

Keywords

Turkey Nite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [vdC59]
    van der Corput, J. G.: Introduction to the Neutrix Calculus. J. Analyse Math., 7, 291–398 (1959)CrossRefGoogle Scholar
  2. [EMOT53]
    Erdelyi, A., Magnus, W., Oberhettinger F., Tricomi, F.G.: Higher Transcendental Functions. Vol.I. McGraw-Hill, New York London Toronto (1953)Google Scholar
  3. [FLS05]
    Ferreira, C., Lopez, J.L., Sinusia, E.P.: Incomplete gamma functions for large values of their variables. Adv. Appl. Math., 34, 467–485 (2005)MATHCrossRefGoogle Scholar
  4. [Fis87]
    Fisher, B.: Neutrices and distributions. Bulgarian Academy of Sciences, 169–175 (1987)Google Scholar
  5. [FK03]
    Fisher, B., Kuribayashi, Y.: Neutrices and the Gamma function. J. Fac. Ed. Tottori Univ. Mat. Sci., 36(1–2), 1–7 (1987)Google Scholar
  6. [FJK03]
    Fisher, B., Jolevska-Tuneska B., Kiliçman, A.: On defining the incomplete Gamma function. Integral Trans. Spec. Funct., 14(4), 293–299 (2003)MATHCrossRefGoogle Scholar
  7. [Fis04]
    Fisher, B.: On defining the incomplete gamma function γ(−m, x_). Integral Trans. Spec. Funct., 15(6), 467–476 (2004)MATHCrossRefGoogle Scholar
  8. [GHT03]
    Gautschi, W., Harris F.E., Temme, N.M.: Expansions of the exponential integral in Incomplete gamma functions. Appl. Math.Lett., 16 1095–1099 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. [GS64]
    Gel’fand I.M., Shilov, G.E.: Generalized Functions. Vol.I. Academic Press, New York London (1964)MATHGoogle Scholar
  10. [LCS05]
    Lin, S.D., Chao Y.S., Srivastava, H.M.: Some expansions of the exponential integral in series of the incomplete gamma function. Appl. Math. Lett., 18, 513–520 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Emin Özçağ
    • 1
  • İnci Ege
    • 1
  • Haşmet Gürçay
    • 1
  • Biljana Jolevska-Tuneska
    • 2
  1. 1.Department of MathematicsHacettepe UniversityBeytepe, AnkaraTurkey
  2. 2.Faculty of Electrical EngineeringSkopjeRepublic of Macedonia

Personalised recommendations