Hidden symmetries of two dimensional superintegrable systems

  • Özlem Defterli
  • Dumitru Baleanu
Conference paper

Abstract

Classification of the invariants of two - dimensional superintegrable systems is presented. The hidden symmetries associated to the existence of Killing - Yano tensors are investigated.

Keywords

Riemannian Space Hide Symmetry Independent Integral Superintegrable System Killing Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [RS99]
    Ranada, M.F., Santander, M.: Superintegrable systems on two-dimensional sphere S-2 and the hyperbolic plane H-2. J. Math. Phys., 40(10), 5026–5057 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. [KMP00]
    Kalnins, E.G., Miller, W. Jr., Pogosyan, G.S.: Completeness of multiseparability on the complex 2-sphere. J. Phys. A: Math. Gen., 33, 6791–6806 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. [KKPM01]
    Kalnins, E.G., Kress, J.M., Pogosyan, G.S., Miller, W. Jr.: Completeness of multiseparability in two-dimensional constant curvature spaces. J. Phys. A: Math. Gen., 34, 4705–4720 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. [STW01]
    Sheftel, M.B., Tempesta, P., Winternitz, P.: Superintegrable systems in quantum mechanics and classical Lie theory. J. Math. Phys., 42(2), 659–673 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. [TTW01]
    Tempesta, P., Turbiner, A.V., Winternitz, P.: Exact solvability of superintegrable systems. J. Math. Phys., 42, 4248–4261 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. [CZ02]
    Curtright, T.L., Zachos, C.K.: Deformation quantization of superintegrable systems in Nambu mechanics. New J. Phys., 4, 83–101 (2002)CrossRefMathSciNetGoogle Scholar
  7. [BD04a]
    Baleanu, D., Defterli, Ö.: Killing-Yano tensors and angular momentum. Czech. Journ. Phys., 54, 157–165 (2004)CrossRefMathSciNetGoogle Scholar
  8. [Eva90]
    Evans, N.W.: Superintegrability in classical mechanics. Phys. Rev. A, 41, 5666–5676 (1990)CrossRefMathSciNetGoogle Scholar
  9. [GPS95]
    Grosche, G., Pogosyan, G.S., Sissakian, A.N.: Path-integral discussion for Smorodinsky-Winternitz potentials.2. The 2-dimensional and 3-dimensional sphere. Fortschr. Phys., 43(6), 523–563 (1995)MATHCrossRefMathSciNetGoogle Scholar
  10. [Arn89]
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer-Verlag, New York (1989)Google Scholar
  11. [Golds80]
    Goldstein, H.: Classical Mechanics. Addison-Wesley, Massachusetts (1980)MATHGoogle Scholar
  12. [Wojciech83]
    Wojciechowski, S.: Superintegrability of the Calogero-Moser system. Phys. Lett. A, 95, 279–281 (1983)CrossRefMathSciNetGoogle Scholar
  13. [FMSUW65]
    Fris, J., Mandrosov, V., Smorodinsky, Ya.A., Uhlir, M., Winternitz, P.: On higher symmetries in quantum mechanics. Phys. Lett., 16, 354–360 (1965)CrossRefMathSciNetGoogle Scholar
  14. [Hieta84]
    Hietarinta, J.: Classical versus quantum integrability. J. Math. Phys., 25(6), 1833–1840 (1984)CrossRefMathSciNetGoogle Scholar
  15. [Hieta87]
    Hietarinta, J.: Direct methods for the search of the second invariant. Phys. Rep., 147, 87–154 (1987)CrossRefMathSciNetGoogle Scholar
  16. [Hol82]
    Holt, C.R.: Construction of new integrable Hamiltonians in two degrees of freedom. J. Math. Phys., 23, 1037–1046 (1982)MATHCrossRefMathSciNetGoogle Scholar
  17. [LV95]
    Létourneau, P., Vinet, L.: Superintegrable systems: polynomial algebras and quasi-exactly solvable Hamiltonians. Ann. Phys., 243, 144–162 (1995)MATHCrossRefGoogle Scholar
  18. [Koen72]
    Koenigs, G.: Sur les géodésiques a intégrales quadratiques. In: Darboux, G. (ed) Leçons sur la théorie générale des surfaces. Chelsea Publishing, London (1972)Google Scholar
  19. [KKW02]
    Kalnins, E.G., Kress, J.M., Winternitz, P.: Superintegrability in a twodimensional space of non-constant curvature. J. Math. Phys., 43, 970–996 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. [KKMW03]
    Kalnins, E.G., Kress, J.M., Miller, W. Jr., Winternitz, P.: Superintegrable systems in Darboux spaces. J. Math. Phys., 44(12), 5811–5848 (2003)MATHCrossRefMathSciNetGoogle Scholar
  21. [KSHM80]
    Kramer, D., Stephani, H., Herlt, E., MacCallum, M.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, London (1980)MATHGoogle Scholar
  22. [GRH93]
    Gibbons, G.W., Rietdijk, R.H., Holten, J.W. van: SUSY in the sky. Nucl. Phys. B, 404, 42–64 (1993)MATHCrossRefGoogle Scholar
  23. [DB04]
    Defterli, Ö., Baleanu, D.: Killing-Yano tensors and superintegrable systems. Czech. Journ. Phys., 54(11), 1215–1221 (2004)CrossRefMathSciNetGoogle Scholar
  24. [Def04]
    Defterli, Ö.: Mathematical Aspects of Superintegrable Systems. MSc Thesis, Çankaya University, Ankara (2004)Google Scholar
  25. [BD04b]
    Baleanu, D., Defterli, Ö.: Killing-Yano tensors, surface terms and superintegrable systems. AIP Conference Proceedings, 729, 99–105 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Özlem Defterli
    • 1
  • Dumitru Baleanu
    • 1
    • 2
  1. 1.Department of Mathematics and Computer Science, Faculty of Arts and ScienceÇankaya University AnkaraTurkey
  2. 2.Institute of Space SciencesMagurele-BucharestRomania

Personalised recommendations