• J. Bonča
  • R. žitko
Part of the NATO Science Series book series (NAII, volume 241)


Low temperature zero-bias conductance through two side-coupled quantum dots is investigated usingWilson’s numerical renormalization group technique. A low-temperature phase diagram is computed. Near the particle-hole symmetric point localized electrons form a spin-singlet associated with weak conductance. For weak inter-dot coupling we find enhanced conductance due to the two-stage Kondo effect when two electrons occupy quantum dots . When quantum dots are populated with a single electron, the system enters the Kondo regime with enhanced conductance. Analytical expressions for the width of the Kondo regime and the Kondo temperature in this regime are given.


Quantum Phase Transition Anderson Model Fano Resonance Kondo Temperature Numerical Renormalization Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apel, V. M., Davidovich, M. A., Anda, E. V., Chiappe, G., and Busser, C. A. (2004) Effect of topology on the transport properties of two interacting dots, Eur. Phys. J. B 40, 365.ADSCrossRefGoogle Scholar
  2. Bulka, B. R. and Stefanski, P. (2001) Fano and Kondo resonance in electronic current through nanodevices, Phys. Rev. Lett. 86, 5128.CrossRefADSGoogle Scholar
  3. Chen, J. C., Chang, A. M., and Melloch, M. R. (2004) Transition between Quantum States in a Parallel-Coupled Double Quantum Dot, Phys. Rev. Lett. 92, 176801.CrossRefADSGoogle Scholar
  4. Cornaglia, P. S. and Grempel, D. R. (2005) Strongly correlated regimes in a double quantum dot device, Phys. Rev. B 71, 075305.CrossRefADSGoogle Scholar
  5. Costi, T. A. (2001) Magnetotransport through a strongly interacting quantum dot, Phys. Rev. B 64, 241310.CrossRefADSGoogle Scholar
  6. Costi, T. A., Hewson, A. C., and Zlatic, V. (1994) Transport coefficients of the Anderson model via the numerical renormalization group, J. Phys.: Condens. Matter 6, 2519.CrossRefADSGoogle Scholar
  7. Craig, N. J., Taylor, J. M., Lester, E. A., Marcus, C. M., Hanson, M. P., and Gossard, A. C. (2004) Tunable Nonlocal Spin Control in a Coupled-Quantum Dot System, Science 304, 565.CrossRefADSGoogle Scholar
  8. Haldane, F. (1978) Theory of the Atomic Limit of the Anderson Model: I. Perturbation expansion re-examined, J. Phys. C: Solid State Phys. 11, 5015.CrossRefADSGoogle Scholar
  9. Hofstetter, W. (2000) Generalized Numerical Renormalization Group for Dynamical Quantities, Phys. Rev. Lett. 85, 1508.CrossRefADSGoogle Scholar
  10. Hofstetter, W. and Schoeller, H. (2003) Quantum Phase Transition in a Multilevel Dot, Phys. Rev. Lett. 88, 016803.CrossRefADSGoogle Scholar
  11. Holleitner, A. W., Blick, R. H., Hüttel, A. K., Eberl, K., and Kotthaus, J. P. (2002) Probing and Controlling the Bonds of an Artificial Molecule, Science 297, 70.CrossRefADSGoogle Scholar
  12. Jeong, H., Chang, A. M., and Melloch, M. R. (2001) The Kondo Effect in an Artificial Quantum Dot Molecules, Science 293, 2221.CrossRefADSGoogle Scholar
  13. Jones, B. A. and Varma, C. M. (1987) Study of Two Magnetic Impurities in a Fermi Gas, Phys. Rev. Lett. 58, 843.CrossRefADSGoogle Scholar
  14. Kang, K., Cho, S. Y., Kim, J.-J., and Shin, S.-C. (2001) Anti-Kondo resonance in transport through a quantum wire with a side-coupled quantum dot, Phys. Rev. B 63, 113304.CrossRefADSGoogle Scholar
  15. Kim, T.-S. and Hershfield, S. (2001) Suppression of current in transport through parallel double quantum dot, Phys. Rev. B 63, 245326.CrossRefADSGoogle Scholar
  16. Kobayashi, K., Aikawa, H., Katsumoto, S., and Iye, Y. (2002) Tuning of the Fano Effect through a Quantum Dot in an Aharonov-Bohm Interferometer, Phys. Rev. Lett. 88, 256806.CrossRefADSGoogle Scholar
  17. Kobayashi, K., Aikawa, H., Sano, A., Katsumoto, S., and Iye, Y. (2004) Fano resonance in a quantum wire with a side-coupled quantum dot, Phys. Rev. B 70, 035319.CrossRefADSGoogle Scholar
  18. Krishna-Murthy, H. R., Wilkins, J. W., and Wilson, K. G. (1980) Renormalization-group approach to the Anderson model of dilute magnetic alloys. I. Statis properties for the symmetric case, Phys. Rev. B 21, 1003.CrossRefADSGoogle Scholar
  19. Lara, G. A., Orellana, P. A., Yanez, J. M., and Anda, E. V. (2004) Kondo effect in side coupled double quantum-dot molecule, cond-mat/0411661.Google Scholar
  20. Meir, Y. and Wingreen, N. S. (1992) Landauer formula for the current through an interacting electron region, Phys. Rev. Lett. 68, 2512.CrossRefADSGoogle Scholar
  21. Stefanski, P., Tagliacozzo, A., and Bulka, B. R. (2004) Fano versus Kondo Resonances in a Multilevel “Semiopen” Quantum Dot, Phys. Rev. Lett. 93, 186805.CrossRefADSGoogle Scholar
  22. van der Wiel, W. G., Franceschi, S. D., Elzerman, J. M., Tarucha, S., Kouwenhoven, L. P., Motohisa, J., Nakajima, F., and Fukui, T. (2002) Two-Stage Kondo Effect in a Quantum Dot at a High Magnetic Field, Phys. Rev. Lett. 88, 126803.CrossRefADSGoogle Scholar
  23. Vojta, M., Bulla, R., and Hofstetter, W. (2002a) Quantum phase transitions in models of coupled magnetic impurities, Phys. Rev. B 65, 140405.CrossRefADSGoogle Scholar
  24. Vojta, M., Bulla, R., and Hofstetter, W. (2002b) Quantum phase transitions in models of coupled magnetic impurities, Phys. Rev. B 65, 140405(R).CrossRefADSGoogle Scholar
  25. Wilson, K. G. (1975) The renormalization group: Critical phenomena and the Kondo problem, Rev. Mod. Phys. 47, 773.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • J. Bonča
    • 1
  • R. žitko
    • 2
  1. 1.J. Stefan Institute Department of PhysicsFMF, University of LjubljanaLjubljanaSlovenia
  2. 2.J. Stefan InstituteLjubljanaSlovenia

Personalised recommendations