II.2 Cuprate and other unconventional superconductors

  • G. Stenuit
  • J. Govaerts
  • S. Michotte
  • L. Piraux
Conference paper
Part of the NATO Science Series book series (NAII, volume 241)


Numerical solutions of the Ginzburg–Landau (GL) equations for cylindrical configurations have been developed to study the magnetization of two superconducting lead nanowires arrays, electrodeposited under either constant or pulsed voltage conditions. By freely adjusting the GL phenomenological lengths χ(T) and ξ(T), the experimental magnetization curves, far from and close to the critical temperature Tc are reproduced to within a 10% error margin. Beyond this agreement, the temperature dependence of the adjusted phenomenological lengths are also compared to di.erent theoretical and empirical laws. The Gorter-Casimir two-fluid model then gives the most satisfactory agreement for both samples. A distinction between them is next achieved by studying the extrapolated penetration depths at zero Kelvin. In particular, a comparison in terms of their electronic mean free paths agrees with the experimental expectation given with both experimental electrodeposition techniques.


Coherence Length Voltage Condition London Penetration Depth Meissner State Vortex Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.K. Geim, I.V. Grigorieva, S.V. Dubonos, J.G.S. Lok, J.C. Maan, A.E. Filippov and F.M. Peeters, Nature 390 (1997) 259.CrossRefADSGoogle Scholar
  2. S. Michotte, L. Piraux, S. Dubois, F. Pailloux, G. Stenuit, J. Govaerts, Physica C377 (2002) 267–276.ADSGoogle Scholar
  3. G. Stenuit, S. Michotte, J. Govaerts and L. Piraux, Vortex Matter in Lead Nanowires, Eur. Phys. J. B 33 (2003) 103–107.CrossRefADSGoogle Scholar
  4. G. Stenuit, S. Michotte, J. Govaerts and L. Piraux, Supercond. Sci. Technol. 18 (2005) 174–182.CrossRefADSGoogle Scholar
  5. V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950) (in Russian).Google Scholar
  6. P. Singha Deo, V.A. Schweigert, F.M. Peeters, Phys. Rev. B 59, 6039 (1999).CrossRefADSGoogle Scholar
  7. V.A. Schweigert, F.M. Peeters, Phys. Rev. Lett. 83, 2409 (1999).CrossRefADSGoogle Scholar
  8. J.J. Palacios, Phys. Rev. B 58, 5948 (1999).CrossRefADSGoogle Scholar
  9. W. V. Pogosov, Phys. Rev. B 65, 224511 (2002).CrossRefADSGoogle Scholar
  10. J. Govaerts, G. Stenuit, D. Bertrand and O. Van der Aa, Phys. Lett. A 267, 56 (2000).CrossRefADSGoogle Scholar
  11. G. Stenuit, J. Govaerts, D. Bertrand and O. Van der Aa, Physica C 332, 277 (2000).CrossRefADSGoogle Scholar
  12. G. Stenuit, S. Michotte, J. Govaerts, L. Piraux and D. Bertrand, Vortex Configurations in Mesoscopic Superconducting Nanowires, Mod. Phys. Lett. B17 (2003) 537–547 (Proceedings of the International Conference on Modern Problems in Superconductivity, Yalta (Ukraine), September 9–14, 2002).ADSGoogle Scholar
  13. G. Stenuit, Configurations de vortex magnétiques dans des cylindres mésoscopiques supraconducteurs, Ph.D. Thesis, Université catholique de Louvain, Louvain-la-Neuve, 2004.Google Scholar
  14. G.F. Zharkov, Phys. Rev. B63 (2001) 224513.ADSGoogle Scholar
  15. G. Stenuit, J. Govaerts and D. Bertrand, Half-Integer Number Vortices in the Ginzburg-Landau-Higgs Model, edited by J. Annett, S. Kruchinin, NATO Science Series II, Vol.67, pp. 375–384 (Proceedings of the NATO Advanced Research Workshop “New Trends in Superconductivity”, Yalta (Ukraine), September 16–20, 2001).Google Scholar
  16. C.P. Bean and J.B. Livingston, Phys. Rev. Lett. 12 (1964) 14.CrossRefADSGoogle Scholar
  17. A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, F.M. Peeters and V.A. Schweigert, Nature 407 (2000) 55.CrossRefADSGoogle Scholar
  18. M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996).Google Scholar
  19. C.J. Gorter and H.B.G. Casimir, Phys. Z. 35 (1934) 963; Physica 1 (1934) 306.Google Scholar
  20. W.-H. Li, C.C. Yang, F.C. Tsao and K.C. Lee, Phys. Rev. B68 (2003) 184507.ADSGoogle Scholar
  21. A Physicist’s Desk Reference, 2nd ed., edited by H. L. Anderson (AIP, New York, 1989), p. 117, cited in the Ref. (Yang et al., 2003).Google Scholar
  22. R. Barlow, Asymmetric errors, Preprint physics/0401042 (2004).Google Scholar
  23. American Institute of Physics Handbook, edited by D.E. Gray, (Mc-Graw-Hill, New York, 1957), pp. 4–49.MATHGoogle Scholar
  24. J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).MATHCrossRefADSMathSciNetGoogle Scholar
  25. A.B. Pippard, Proc. R. Soc. A 216, 547 (1953).ADSCrossRefGoogle Scholar
  26. H. Natter and R. Hempelmann, Electrochimica Acta 49 (2003) 51–61.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • G. Stenuit
    • 1
  • J. Govaerts
    • 2
  • S. Michotte
    • 3
  • L. Piraux
    • 3
  1. 1.Tyndall National InstituteUniversity CollegeProspect RowIreland
  2. 2.Institut de Physique Nucléaire (FYNU)Université catholique de Louvain,Louvain-la-NeuveBelgium
  3. 3.Unité de Physico-Chimie et de Physique des Matériaux (PCPM)UniversitUniversité catholique de Louvain catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations