Skip to main content

Abstract

Up to this point, structures of mostly finite objects have been discussed. Thus, point groups were applicable to their symmetries. A simplified classification of various symmetries was presented in Chapter 2 (cf., Figure 2-31 and Table 2-2). Point-group symmetries are characterized by the lack of periodicity in any direction. However, repetition is a fundamental feature in our world, both in nature and in what we create.

The beauty of life is,° geometrical beauty° J. Desmond Bernal (1901–1971) [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. D. Bernal, The Origin of Life. Weidenfeld and Nicolson, London, 1967.

    Google Scholar 

  2. L. B. Young, The Mystery of Matter. Oxford University Press, New York, 1965.

    Google Scholar 

  3. F. J. Budden, The Fascination of Groups. University Press, Cambridge, 1972.

    Google Scholar 

  4. Ibid.

    Google Scholar 

  5. A. V. Shubnikov, V. A. Koptsik, Symmetry in Science and Art, Plenum Press, New York and London, 1974. Russian original: Simmetriya v nauke i iskusstve, Nauka, Moscow, 1972.

    Google Scholar 

  6. I. Hargittai, G. Lengyel, “The Seven One-Dimensional Space-Group Symmetries Illustrated by Hungarian Folk Needlework.”J. Chem. Educ. 1984, 61, 1033–1034.

    Article  Google Scholar 

  7. I. Hargittai, “Real turned ideal through symmetry.” In Symmetrie in Geistes- und Naturwissenschaft, R. Wille, ed., Springer-Verlag, Berlin, 1988, pp. 131–161; D. W. Crowe, in The Geometric Vein. The Coxeter Fertschrift, C. Davis, B. Grünbaum, F. A. Sherk, eds., Springer-Verlag, New York, 1982.

    Google Scholar 

  8. Hargittai, Lengyel, J. Chem. Educ. 1033–1034.

    Google Scholar 

  9. Hargittai, Symmetrie in Geistes- und Naturwissenschaf ; Crowe, The Geometric Vein. The Coxeter Fertschrift.

    Google Scholar 

  10. Shubnikov, Koptsik, Symmetry in Science and Art.

    Google Scholar 

  11. Ibid.

    Google Scholar 

  12. See, e.g., Q. Liu, W. Liu, Z.-M. Cui, W.-G. Song, L.-J. Wan, “Synthesis and Characterization of 3D Double Branched K Junction Carbon Nanotubes and Nanorods.” Carbon 2007, 45, 268–273; X. Ye, X. Gu, X. G. Gong, T. K. M. Shing, Z.-F. Liu, “A Nanocontainer for the Storage of Hydrogen.” Carbon 2007, 45, 315–320.

    Google Scholar 

  13. See, e.g., V. Ya. Shevchenko, Ed., Nanoparticles, Nanostructures and Nanocomposites. ECRS, Saint-Petersburg, 2006.

    Google Scholar 

  14. A. Fredga, “Chemistry 1963.” In Nobel Lectures Including Presentation Speeches and Laureates’ Biographies: Chemistry 1963–1970. World Scientific, Singapore, 1999, pp. 3–5, p. 4.

    Google Scholar 

  15. P. Corradini, “The Role of the Discovery and Investigation of Stereoregular Polymers in Macromolecular Chemistry.” In S. Carra, F. Parisi, I. Pasquon, P. Pino, eds., Giulio Natta: Present significance of his scientific contribution. Editrice di Chimica, Milan, 182, pp. 126–146, p.136.

    Google Scholar 

  16. L. Pauling, “The Discovery of the Alpha Helix.” Chemical Intelligencer 1996, 2(1), 32–38 (posthumous publication).

    Google Scholar 

  17. Corradini, Giulio Natta, p. 134.

    Google Scholar 

  18. J. D. Watson, F. H. C. Crick, “Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid.” Nature 1953, 171, 737–738.

    Article  CAS  Google Scholar 

  19. Ibid., p. 737.

    Google Scholar 

  20. Ibid.

    Google Scholar 

  21. Ibid., p. 738.

    Google Scholar 

  22. W. Cochran, F. H. C. Crick, V. Vand, “The Structure of Synthetic Polypeptides. I. Transform of Atoms on a Helix.” Acta Cryst. 1952, 5, 581–586.

    Article  CAS  Google Scholar 

  23. Pauling, Chemical Intelligencer 32–38.

    Google Scholar 

  24. See, e.g., the relevant discussions in I. Hargittai, The DNA Doctor: Candid Conversations with James D. Watson. World Scientific, Singapore, 2007.

    Google Scholar 

  25. E. Chargaff, Heraclitean Fire: Sketches from a Life before Nature. The Rockefeller University Press, New York, 1978, p. 106.

    Google Scholar 

  26. I. Hargittai, Candid Science II: Conversations with Famous Biomedical Scientists. Ed. M. Hargittai. Imperial College Press, London, 2002, “Aaron Klug,” pp. 306–329, p. 312.

    Google Scholar 

  27. D’Arcy Thompson, On Growth and Form. Cambridge University Press, Cambridge, 1917.

    Google Scholar 

  28. B. P. Belousov, in Sbornik Referatov po Radiatsionnoi Medicine, pp. 145-7, Medgiz, Moscow, 1958. “The tragic story of Belousov’s life and his unsuccessful struggles to publish his discovery has been told.” In S. E. Shnol, Geroi, zlodei, konformosti rossiiskoi nauki (in Russian, Heroes, villains, and conformists of Russian science). Second, augmented edition. Kron-Press, Moscow, 2001, pp. 278–307.

    Google Scholar 

  29. A. M. Zhabotinsky, “Periodic Kinetics of Oxidation of Malonic Acid in Solution (Study of the Belousov Reaction Kinetics).” Biofizika 1964, 9, 306–311; A. N. Zaikin, A. M. Zhabotinsky, “Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System.” Nature 1970, 225, 535–537. See, also, a conversation with Anatol M. Zhabotinsky, I. Hargittai, Candid Science III: More Converstions with Famous Chemists. (ed. M. Hargittai.) Imperial College Press, London, 2003, pp. 432–447.

    Google Scholar 

  30. E. Körös, “Oscillations, Waves, and Spirals in Chemical Systems.” In Spiral Symmetry, I. Hargittai and C. A. Pickover, eds., World Scientific, Singapore, 1992, pp. 221–249, p. 241.

    Chapter  Google Scholar 

  31. See, B. G. Elmegreen, “Spiral Galaxies.” In Spiral Symmetry, I. Hargittai and C. A. Pickover, eds., World Scientific, Singapore, 1992, pp. 95–106.

    Chapter  Google Scholar 

  32. A. V. Shubnikov, “Symmetry of Similarity.” Soviet Phys. Crystallogr. 1961, 5, 469–476; reprinted in Crystal Symmetries, I. Hargittai and B. K. Vainshtein, eds., Pergamon Press, 1988, pp. 365–371.

    Google Scholar 

  33. I. Hargittai, C. A. Pickover, “Preface.” In I. Hargittai, C. A. Pickover, eds., Spiral Symmetry. World Scientific, Singapore, 1992, pp. v–xi, p. x.

    Chapter  Google Scholar 

  34. Hargittai, Pickover, Spiral Symmetry.

    Google Scholar 

  35. M. J. Buerger, Elementary Crystallography, An Introduction to the Fundamental Geometrical Features of Crystals (Fourth printing), Wiley, New York, London, Sydney, 1967.

    Google Scholar 

  36. I. Hargittai and G. Lengyel, “The Seventeen Two-Dimensional Space-Group Symmetries in Hungarian Needlework.” J. Chem. Educ. 1985, 62, 35–36.

    Article  Google Scholar 

  37. Crowe, Geometric Vein.

    Google Scholar 

  38. L.V. Azaroff, Introduction to Solids, McGraw-Hill, New York, Toronto, London, 1960.

    Google Scholar 

  39. D. Schattschneider, Visions of Symmetry. Notebooks, Periodic Drawings, and Related Work of M. C. Esher, W. H. Freeman and Co., New York, 1990.

    Google Scholar 

  40. C. H. MacGillavry, Symmetry Aspects of M. C. Escher’s Periodic Drawings, Bohn, Scheltema and Holkema, Utrecht, 1976.

    Google Scholar 

  41. From an article in Algemeen Handelsblat, 1952 (courtesy of Henk Schenk, Amsterdam).

    Google Scholar 

  42. MacGillavry, Symmetry Aspects of M. C. Escher’s Periodic Drawings,

    Google Scholar 

  43. Ibid.

    Google Scholar 

  44. F. Brisse, “La symétrie bidimensionelle et le Canada.” Can. Mineral. 1981, 19, 217–224.

    Google Scholar 

  45. Brisse, Can. Mineral. 217–224.

    Google Scholar 

  46. Kh. S. Mamedov, I. R. Amiraslanov, G. N. Nadzhafov, A. A. Muzhaliev, Decorations Remember (in Azerbaijani), Azerneshr, Baku, 1981.

    Google Scholar 

  47. I. Amiraslan, H. Necefoglu, Azerbajani Tessellations, Published by Hacali Necefoglu, Kars, Turkey, 2006.

    Google Scholar 

  48. See, also, I. Hargittai, “Crystal Structures and Culture: In Memoriam Khudu Mamedov (1927–1988).” Struct. Chem. 2007, 18, 535–536.

    Article  CAS  Google Scholar 

  49. Mamedov, et al., Decorations Remember, Hargittai, Struct. Chem. 535–536.

    Google Scholar 

  50. G. Pólya, “Über die Analogie der Kristallsymmetrie in der Ebene.” Z. Krist. 1924, 60, 278–282.

    Google Scholar 

  51. B. Grünbaum, G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987.

    Google Scholar 

  52. Pólya, Z. Kristallogr. 278–282.

    Google Scholar 

  53. Shubnikov, Koptsik, Symmetry in Science and Art.

    Google Scholar 

  54. See, H. Giger, “Moirés.” In Symmetry: Unifying Human Understanding. Ed.I. Hargittai. Pergamon Press, Oxford, 1986, pp. 329–361; W. Witschi, “Moirés.” In Symmetry, Unifying Human Understanding, I. Hargittai, ed., Pergamon Press, New York and Oxford, 1986, pp. 363–378.

    Google Scholar 

  55. Ibid.

    Google Scholar 

  56. Giger, Symmetry, Unifying Human Understanding, pp. 329–361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdolna Hargittai .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hargittai, M., Hargittai, I. (2009). Space-Group Symmetries. In: Symmetry through the Eyes of a Chemist. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5628-4_8

Download citation

Publish with us

Policies and ethics