Electronic Structure of Atoms and Molecules


Everything that counts in chemistry is related to the electronic structure of atoms and molecules. The formation of molecules from atoms, their behavior and reactivity all depend on the electronic structure. What is the role of symmetry in all this? In various aspects of the electronic structure, symmetry can tell us a good deal; why certain bonds can form and others cannot, why certain electronic transitions are allowed and others are not, and why certain chemical reactions occur and others do not.


Wave Function Molecular Orbital Irreducible Representation Point Group Electronic Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. L. Mackay, A Dictionary of Scientific Quotations, Adam Hilder, Bristol 1991, p. 57/85.Google Scholar
  2. 2.
    I. N. Levine, Quantum Chemistry, Sixth Edition, Prentice Hall, Upper Saddle River, New Jersey, 2008.Google Scholar
  3. 3.
    P. Atkins, R. Friedman, Molecular Quantum Mechanics, Fourth Edition, Oxford University Press, New York, 2005.Google Scholar
  4. 4.
    D.V.George, Principles of Quantum Chemistry, Pergamon Press, New York, 1972.Google Scholar
  5. 5.
    M.W.Hanna, Quantum Mechanics in Chemistry, Second Edition, W. A. Benjamin, New York, Amsterdam, 1969.Google Scholar
  6. 6.
    F. A. Cotton, Chemical Applications of Group Theory, Third Edition, Wiley-Interscience, New York, 1990.Google Scholar
  7. 7.
    D. C. Harris, M. D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy, Dover Publications, New York, 1989.Google Scholar
  8. 8.
    M. Orchin, H. H. Jaffe, Symmetry Orbitals, and Spectra (S.O.S), Wiley-Interscience, New York, 1971.Google Scholar
  9. 9.
    Hanna, Quantum Mechanics in Chemistry. Google Scholar
  10. 10.
    Atkins, Friedman, Molecular Quantum Mechanics. Google Scholar
  11. 11.
    George, Principles of Quantum Chemistry. Google Scholar
  12. 12.
    Hanna, Quantum Mechanics in Chemistry. Google Scholar
  13. 13.
    Cotton, Chemical Applications of Group Theory. Google Scholar
  14. 14.
    E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York, 1959.Google Scholar
  15. 15.
    Harris, Bertolucci, Symmetry and Spectroscopy. Google Scholar
  16. 16.
    Ibid, p. 3.Google Scholar
  17. 17.
  18. 18.
    T. H.Lowry, K.S.Richardson, Mechanism and Theory in Organic Chemistry; Third Edition. Harper and Row, New York (1987)Google Scholar
  19. 19.
    Maple V, Release 2, Waterloo Maple Software, University of Waterloo, Ontario, Canada.Google Scholar
  20. 20.
    C. A. Coulson, The Shape and Structure of Molecules, Clarendon Press, Oxford, 1973.Google Scholar
  21. 21.
    G. Lanza, Z. Varga, M. Kolonits, M. Hargittai, “On the Effect of 4f Electrons on the Structural Characteristics of Lanthanide Trihalides. Computational and Electron Diffraction Study of Dysprosium Trichloride”. J. Chem. Phys. 2008, 128, 074301–1–14.CrossRefGoogle Scholar
  22. 22.
    Drawn with Gaussview, Version 4.1.2, A. Frisch, R. D. Dennington II, T. D. Keith and J. Millam, Gaussview 4 Reference, Gaussian Inc., 2007.Google Scholar
  23. 23.
    Cotton, Chemical Applications of Group Theory. Google Scholar
  24. 24.
    Drawn with Gaussview (for reference, see, Figure 6-13).Google Scholar
  25. 25.
    Harris, Bertolucci, Symmetry and Spectroscopy.Google Scholar
  26. 26.
  27. 27.
  28. 28.
    Drawn with Gaussview (for reference, see, Figure 6-13).Google Scholar
  29. 29.
  30. 30.
    Cotton, Chemical Applications of Group Theory.Google Scholar
  31. 31.
    J. L. Gay-Lussac, “Memoir on the Combination of Gaseous Substances with Each Other.” Mémoires de la Société d’Arcueil 1809, 2, 207–234, as translated in Alembic Club Reprint No. 4, (Edinburgh, 1890).Google Scholar
  32. 32.
    Levine, Quantum Chemistry. Google Scholar
  33. 33.
    Atkins, Friedman, Molecular Quantum Mechanics. Google Scholar
  34. 34.
    George, Principles of Quantum Chemistry. Google Scholar
  35. 35.
    Hanna, Quantum Mechanics in Chemistry. Google Scholar
  36. 36.
    Encyclopedia of Computational Chemistry, eds. P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, P. R. Schreiner, Wiley, Chichester, 1998.Google Scholar
  37. 37.
    I. Hargittai, M. Hargittai, Symmetry through the Eyes of a Chemist, Second Edition, Plenum, New York, 1995, p. 272.Google Scholar
  38. 38.
    M. Hargittai, I. Hargittai, “Aspects of Structural Chemistry in Molecular Biology”, In: A. Domenicano, I. Hargittai, eds.: Strength from Weekness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, and Crystals, Kluwer, Dordrecht, 2002, pp. 91–119.CrossRefGoogle Scholar
  39. 39.
    M. Hargittai, I. Hargittai, “Experimental and Computed Bond Lengths: The Importance of Their Differences.” Int. J. Quant. Chem. 1992, 44, 1057–1067.CrossRefGoogle Scholar
  40. 40.
    I. Hargittai, M. Hargittai, “The Importance of Small Structural Differences,” in Molecular Structure and Energetics, Vol. 2, Chapter 1, J. F. Liebman and A. Greenberg, eds., VCH Publishers, New York, 1987, pp. 1–35.Google Scholar
  41. 41.
    R. Hilgenfeld, W. Saenger, “Stetter’s Complexes are no Intramolecular Inclusion Compounds.” Angew. Chem. Int. Ed. Eng. 1982, 21, 787–788.CrossRefGoogle Scholar
  42. 42.
    K. B. Borisenko, C. W. Bock, I. Hargittai, “Intramolecular Hydrogen Bonding and Molecular Geometry of 2-Nitrophenol from a Joint Gas-Phase Electron Diffraction and Ab Initio Molecular Orbital Investigation.” J. Phys. Chem. 1994, 98, 1442–1448.CrossRefGoogle Scholar
  43. 43.
    M. Hargittai, P. Schwerdtfeger, B. Réffy, R. Brown, “The Molecular Structure of Different Species of Cuprous Chloride from Gas-Phase Electron Diffraction and Quantum Chemical Calculation.”Chem. Eur. J. 2003, 9, 327–333.CrossRefGoogle Scholar
  44. 44.
    B. Vest, Z. Varga, M. Hargittai, A. Hermann, P. Schwerdtfeger, “The Elusive Structure of CrCl2 – A Combined Computational and Gas Phase Electron Diffraction Study.” Chem. Eur. J. 2008, 14, 5130–5143.CrossRefGoogle Scholar
  45. 45.
    Z. Varga, G. Lanza, C. Minichino, M. Hargittai, “Quasilinear Molecule par Excellence, SrCl2: Structure from High-Temperature Gas-Phase Electron Diffraction and Quantum Chemical Calculations; Computed Structures of SrCl2-Argon Complexes.” Chem. Eur. J. 2006, 12, 8345–8357.CrossRefGoogle Scholar
  46. 46.
    R. D. Levine, “The Chemical Shape of Molecules – An Introduction to Dynamic Stereochemistry.” J. Phys. Chem. 1990, 94, 8872–8880.CrossRefGoogle Scholar
  47. 47.
    H. F. Schafer III., “Computers and Molecular Quantum Mechanics: 1965–2001, a personal perspective.” J. Mol. Struct. (Theochem) 2001, 573, 129–137.Google Scholar
  48. 48.
    H. F. Schafer III, Private communication to one of the authors (IH) at the 10th Conference on the Current Trends in Computational Chemistry, Jackson, Mississippi, 2001.Google Scholar
  49. 49.
    H. Bethe, “Termaufspaltung in Kristallen (Splitting of Terms in Crystals)” Ann. Phys. 1929, 3, 133–208.CrossRefGoogle Scholar
  50. 50.
    F. A. Cotton, G. Wilkinson, P. L. Gaus, Basic Inorganic Chemistry, Second Edition, John Wiley & Sons, New York, 1987.Google Scholar
  51. 51.
  52. 52.
    A. Ceulemans, D. Beyens, L. G. Vanquickenborne, “Symmetry Aspects of Jahn–Teller Activity – Structure and Reactivity.” J. Am. Chem. Soc. 1984, 106, 5824–5837.CrossRefGoogle Scholar
  53. 53.
    H. A. Jahn, E. Teller, “Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy.” Proc. Roy. Soc. 1937, A161, 220–235.CrossRefGoogle Scholar
  54. 54.
    T. A. Barckholtz, T. A. Miller, “Quantitative Insights about Molecules Exhibiting Jahn–Teller and Related Effects.” Int. Rev. Phys. Chem. 1998, 17, 435–524.CrossRefGoogle Scholar
  55. 55.
    I. B. Bersuker, The Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry, Plenum Press, New York, 1984.CrossRefGoogle Scholar
  56. 56.
    I. B. Bersuker and V. Z. Polinger, Vibronic Interactions in Molecules and Crystals, Springer-Verlag, Berlin, 1989.CrossRefGoogle Scholar
  57. 57.
    I. B. Bersuker, The Jahn–Teller Effect, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
  58. 58.
    I. B. Bersuker, “Jahn–Teller Effect in Crystal-Chemistry and Spectroscopy.” Coord. Chem. Rev. 1975, 14, 357–412.CrossRefGoogle Scholar
  59. 59.
    I. B. Bersuker, “Modern Aspects of the Jahn–Teller Effect Theory and Applications to Molecular Problems.” Chem. Rev. 2001, 101, 1067–1114.CrossRefGoogle Scholar
  60. 60.
    I. B. Bersuker, “The Jahn–Teller Effect As a General Tool for Solving Molecular and Solid State Problems: Novel Findings.” J. Mol. Struct. 2007, 838, 44–52.CrossRefGoogle Scholar
  61. 61.
    Jahn, Teller, Proc. Roy. Soc.Google Scholar
  62. 62.
    J. S. Wright, G. A. GiLabio, “Structure and Stability of Small Hydrogen Rings.” J. Phys. Chem. 1992, 96, 10793–10799.CrossRefGoogle Scholar
  63. 63.
    B. E. Applegate, T. E. Miller, J. Chem. Phys. 2002, 17, 10654–10674.CrossRefGoogle Scholar
  64. 64.
    Cotton et al.,Basic Inorganic Chemistry.Google Scholar
  65. 65.
    Bersuker, The Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry. Google Scholar
  66. 66.
    Bersuker, Polinger, Vibronic Interactions in Molecules and Crystals.Google Scholar
  67. 67.
    Bersuker, The Jahn–Teller Effect. Google Scholar
  68. 68.
    A. F. Wells, Structural Inorganic Chemistry, Fourth Edition, Clarendon Press, Oxford, 1975.Google Scholar
  69. 69.
  70. 70.
  71. 71.
  72. 72.
    J. E. Huheey, Inorganic Chemistry Principles of Structure and Reactivity, Third Edition, Harper & Row Publishers, New York, 1983.Google Scholar
  73. 73.
    Bersuker, The Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry. Google Scholar
  74. 74.
    Bersuker, Polinger, Vibronic Interactions in Molecules and Crystals. Google Scholar
  75. 75.
    Bersuker, The Jahn–Teller Effect. Google Scholar
  76. 76.
    Bersuker, Polinger, Vibronic Interactions in Molecules and Crystals. Google Scholar
  77. 77.
    Bersuker, Coord. Chem. Rev. 357–412.Google Scholar
  78. 78.
  79. 79.
    Huheey, Inorganic Chemistry Principles of Structure and Reactivity. Google Scholar
  80. 80.
    M. Hargittai, B. Réffy, M. Kolonits, C. J. Marsden, J.-L. Heully, “The Structure of the Free MnF3 Molecule – A Beautiful Example of the Jahn–Teller Effect.” J.Am. Chem. Soc. 1997, 119, 9042–9048.CrossRefGoogle Scholar
  81. 81.
    B. Réffy, M. Kolonits, A. Schulz, T. M. Klapötke, M. Hargittai, “Intriguing Gold Trifluoride – Molecular Structure of Monomers and Dimers: An Electron Diffraction and Quantum Chemical Study.” J. Am. Chem. Soc. 2000, 122, 3127–3134.CrossRefGoogle Scholar
  82. 82.
    M. Hargittai, A. Schulz, B. Réffy, M. Kolonits, “Molecular Structure, Bonding and Jahn–Teller Effect in Gold Chlorides: Quntum Chemical Study of AuCl3, Au2Cl6, AuCl4 -, AuCl, and Au2Cl2 and Electron Diffraction Study of Au2Cl6.” J.Am. Chem. Soc. 2001, 123, 1449–1458.CrossRefGoogle Scholar
  83. 83.
    A. Schulz, M. Hargittai, “Structural Variations and Bonding in Gold Halides. AQuantum Chemical Study of Monomeric and Dimeric Gold Monohalide and Gold Trihalide Molecules, AuX, Au2X2, AuX3, and Au2X6 (X = F, Cl, Br, I).” Chem. Eur. J. 2001, 7, 3657–3670.CrossRefGoogle Scholar
  84. 84.
  85. 85.
    I. Hargittai, M. Hargittai, “Edward Teller.” Chemical Intell 1997, 3, 14–23.Google Scholar
  86. 86.
    R. Renner, “Zur Theorie der Wechselwirkung zwischen Elektronen- und Kernbewegung bei dreiatomigen, stabförmigen Molekülen.“ Z. Phys. 1934, 92, 172–193.CrossRefGoogle Scholar
  87. 87.
    K. Dressler, D. A. Ramsay, “The Electronic Absorption Spectra of NH2 and ND2.” Phil. Trans. Roy. Soc. London 1959, 251A, 553–602.CrossRefGoogle Scholar
  88. 88.
    Vest et al., Chem. Eur. J. 5130–5143.Google Scholar
  89. 89.
    J. W. Tracy, N. W. Gregory, E. C. Lingafelter, J. D. Dunitz, H.-C. Mez, R. E. Rundle, C. Scheringer, H. L. Yakel, M. K. Wilkinson, “The crystal structure of chromium(II) chloride.” Acta Cryst. 1961, 14, 927–929.CrossRefGoogle Scholar
  90. 90.
    Bersuker, Chem. Rev. 1067–1114.Google Scholar
  91. 91.
  92. 92.
    Bersuker, J. Mol. Struct. 44–52.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations