• L. Lvova
  • P. Paolesse
  • C. Di Natale
  • E. Martinelli
  • E. Mazzone
  • A. Orsini
  • A. D′Amico
Part of the NATO Security through Science Series book series


Following the success of electronic noses in a variety of applications related to many areas such as industrial, medical, environmental, spatial, etc. where the objective was to construct chemical images of volatile compounds including odors, here we introduce another system able to perform chemical images of liquids of different origin, quality, and composition. In line with mammalian senses such as olfaction or taste, recently a strategy which applies the sensors not specific in character for a single analyte but rather broadly sensitive with the only necessary characteristic and prerequisite to be different from each other in terms of their responses, has been developed. The sensors are grouped in a matrix and supported by a suitable pattern recognition analysis in order to generate a global response of the overall array. For liquid phase analysis such a system is called electronic tongue. This chapter describes in some detail the operating principle of the sensors forming the electronic tongue multisensor system, the matrix strategy, the most suitable data analysis adopted for the purpose, and a number of chemical images of different liquids including potable and waste waters, soft drinks, alcoholic beverages, clinical samples and some biological objects, taking into account the different components’ concentration distributions present in the tested samples.


Partial Less Square Partial Less Square Regression Sensor Array Electronic Nose Standard Hydrogen Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, K. J., Lewis, N. S., Schauer, C. L., Sotzing, G. A., Stitzel, S. E., Vaid, T. P., and Walt, D. R. (2000) Cross-Reactive Chemical Sensor Arrays, Chemical Review 100, 2595–2626.CrossRefGoogle Scholar
  2. Apetrei, C., Rodriguez-Mendez, M. L., and de Saja, J. A. (2005) Modified carbon paste electrodes for discrimination of vegetable oils, Sensors and Actuators B 111/112, 403–409.CrossRefGoogle Scholar
  3. Arikawa, Y., Toko, K., Ikezaki, H., Shinha, Y., Ito, T., Oguri, I., and Baba, S. (1995) Sensor Materials 7, 261.Google Scholar
  4. Arrieta, A., Rodriguez-Mendez, M. L., and de Saja, J. A. (2003) Sensors Actuators B 95, 357–365.CrossRefGoogle Scholar
  5. Badr, A. J. and Fulkner, L. R. (2000) Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York, Wiley, 856 pp.Google Scholar
  6. Bhlmann, P., Pretsch, E., and Bakker, E. (1998) Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors, Chemical Review 98, 1593–1687.CrossRefGoogle Scholar
  7. Buratti, S., Benedetti, S., Scampicchio, M., and Pangerod, E. C. (2004) Characterization and Classification of Italian Barbera Wines by Using an Electronic Nose and Amperometric Electronic Tongue, Analytica Chimica Acta 525, 133–139.CrossRefGoogle Scholar
  8. Cattrall, R. W. (1997) Chemical Sensors, Vol. 1, Oxford, Oxford University Press.Google Scholar
  9. Ciosek, P., Sobanski, T., Augustyniak, E., and Wroblewski, W. (2006) ISE-based Sensor Array System for Classification of Foodstuffs, Measurement Science and Technology 17, 6–11.CrossRefGoogle Scholar
  10. D’Amico, A., Di Natale, C., and Paolesse, R. (2000) Portraits of Gasses and Liquids by Arrays of Nonspecific Chemical Sensors: Trends and Perspectives, Sensors and Actuators B 68, 324–330.CrossRefGoogle Scholar
  11. Di Natale, C., Magagnano, A., Davide, F., D’Amico, A., Legin, A., Rudnitskaya, A., Vlasov, Yu., and Seleznev, B. (1997) Multicomponent Analysis of Polluted Waters by Means of Electronic Tongue, Sensors and Actuators B 44, 423–428.CrossRefGoogle Scholar
  12. Di Natale, C., Paolesse, R., Macagnano, A., Mantini, A., D’Amico, A., Legin, A., Lvova, L., Rudnitaskaya, A., and Vlasov, Yu. (2000a) Electronic Nose and Electronic Tongue Integration for Improved Classification of Clinical and Food Samples, Sensors and Actuators B 64, 15–21.CrossRefGoogle Scholar
  13. Di Natale, C., Paolesse, R., Macagnano, A., Mantini, A., D’Amico, A., Ubigli, M., Legin, A., Lvova, L., Rudnitaskaya, A., and Vlasov Yu. (2000b) Application of a Combined Artificial Olfaction and Taste System to the Quantification of Relevant Compounds in Red Wine, Sensors and Actuators B 69, 342–347.CrossRefGoogle Scholar
  14. Duda, R. O., Hart, P. E., and Stork, D. E. (2001) Pattern Classification, 2nd ed., New York, Wiley.MATHGoogle Scholar
  15. Duran, A., Cortina, M., Velasco, L., Rodriguez, J. A., Alegret, S., Calvo, D., and del Valle, M. (2005) Vitrual Instrument as an Automated Potentiometric e-Tongue Based on SIA, In Proceedings of ISOEN’11, April 13–15, Barcelona, Spain, pp. 316–319.Google Scholar
  16. Gallaro, J., Alegret, S., and del Valle, M. (2004) A Flow-injection Electronic Tongue Based on Potentiometric Sensors for the Determination of Nitrate in the Presence of Chloride, Sensors and Actuators B 101, 82–80.Google Scholar
  17. Geladi, P. and Kowlaski, B. (1986) Partial Least Square Regression: A Tutorial. Analytica Chemica Acta 35, 1–17.CrossRefGoogle Scholar
  18. Grl, M., Cortina, M., Calvo, D., and del Valle, M. (2005) Automated e-Tongue Based on Potentiometric Sensors for Determining Alkaline-earth Ions in Water, In Proceedings of ISOEN’11, April 13–15, Barcelona, Spain, pp. 296–299.Google Scholar
  19. Habara, M., Ikezaki, H., and Toko, K. (2004) Study of Sweet Taste Evaluation Using Taste Sensor with Lipid/Polymer Membranes, Biosensors and Bioelectronics 19, 1559–1563.CrossRefGoogle Scholar
  20. Harvey, D. (2000) Modern Analytical Chemistry, 1st ed., New York, McGraw-Hill, p. 468.Google Scholar
  21. Hayashi, K., Yamanaka, M., Toko, K., and Yamafuji, K. (1990) Sensors and Actuators B 2, 05.Google Scholar
  22. Holmin, S., Krantz-Rlcker, C., and Winquist, F. (2004) Multivariate Optimization of Electrochemically Pre-treated Electrodes Used in a Voltammetric Electronic Tongue, Analytica Chimica Acta 519, 39–46.CrossRefGoogle Scholar
  23. Iiyama, S., Ezaki, S., Toko, K., Matsuno, T., and Yamafuji, K. (1995) Study of Astringency and Pungency with Multichannel Taste Sensor Made of Lipid Membranes, Sensors and Actuators B 24/24, 75–79.CrossRefGoogle Scholar
  24. Iiyama, S., Kuga, H., Ezaki, S., Hayashi, K., and Toko, K. (2003) Peculiar Change in Membrane Potential of Taste Sensor Caused by Umami Substances, Sensors and Actuators B 91, 191–194.CrossRefGoogle Scholar
  25. Izs, S. and Garnier, M. (2005) The Umami Taste and the IMP/GMP Synergetic Effects Quantify by the ASTREE Electronic Tongue, In Proceedings of ISOEN’11, April 13–15, Barcelona, Spain, pp. 66–69.Google Scholar
  26. Krantz-Rlcker, A., Stenberg, M., Winquist, F., and Lundstrm, I. (2001) Electronic Tongues for Environmental Monitoring Based on Sensor Arrays and Pattern Recognition: A Review, Analytica Chimica Acta 426, 217–226.CrossRefGoogle Scholar
  27. Krusse-Jaress, J. D. (1988) Ion-selective Potentiometry in Clinical Chemistry, Medichal Progress Throufh Technology 13, 107–130.Google Scholar
  28. Lavigne, J. J. and Anslyn, E. V. (2001) Angewandte Chemie International Edition 40, 3118.CrossRefGoogle Scholar
  29. Lavigne, J., Savoy, S., Clevenger, M. B., Ritchie, J. E., Bridget, M., Yoo, S. J., Anslyn, E. V., McDevitt, J. T., Shear, J. B., and Neikirk, D. (1998) Journal of American Chemical Society 120, 6429.CrossRefGoogle Scholar
  30. Legin, A., Kirsanov, D., Rudnitskaya, A., Iversen, J. J. L., Seleznev, B., Esbensen, K. H., Mortensen, J., Houmller, L. P., and Vlasov, Yu. (2004a) Multicomponent Analysis of Fermentation Growth Media Using the Electronic Tongue (ET), Talanta 64, 766–772.CrossRefGoogle Scholar
  31. Legin, A., Lvova, L., Rudnitskaya, A., Vlasov, Yu., Di Natale, C., Mazzone, E., and D’Amico, A. (2001) In Proceedings of the Second Symposium in Vino Analytical Science, Bordeaux, France, p. 165.Google Scholar
  32. Legin, A., Makarychev-Mikhailov, S., Goryacheva, O., Kirsanov, D., and Vlasov, Yu. (2002) Cross-Sensitive Chemical Sensors Based on Tetraphenylporphyrin and Phthalocyanine, Analytica Chimica Acta 457, 297–303.CrossRefGoogle Scholar
  33. Legin, A. V., Rudnitskaya, A. M., Legin, K. A., Ipatov, A. V., and Vlasov, Yu. G. (2005a) Methods for Multivariate Calibrations for Processing of the Dynamic Response of a Flow-Injection Multiple-Sensor System, Russian Journal of Applied Chemistry 78, 89–95.CrossRefGoogle Scholar
  34. Legin, A., Rudnitskaya, A., Seleznev, B., Kirsanov, D., and Vlasov, Yu. (2004b) Chemical Sensor Arrays for Simultaneous Activity of Several Heavy Metals at Ultra Low Level, In Proceedings of Eurosensors XVIII, Rome, Italy, pp. 85–86.Google Scholar
  35. Legin, A., Rudnitskaya, A., Seleznev, B., and Vlasov, Yu. (2005b) Electronic Tongue for Quality Assessment of Ethanol, Vodka and Eau-de-vi, Analytica Chimica Acta 534, 129–135.CrossRefGoogle Scholar
  36. Legin, A., Rudnitskaya, A., Smirnova, A., Lvova, L., and Vlasov, Yu. (1999a) Journal of Applied Chemistry (Russia) 72, 114.Google Scholar
  37. Legin, A., Rudnitskaya, A., and Vlasov, Yu. (2003) In S. Alegret (ed.), Integrated Analytical Systems, Comprehensive Analytical Chemistry, Vol. XXXIX, Amsterdam, Elsevier, p. 437.Google Scholar
  38. Legin, A., Rudnitskaya, A., Vlasov, Yu., Di Natale, C., Mazzone, E., and D’Amico A. (1999b) Electroanalysis 11, 814.CrossRefGoogle Scholar
  39. Legin, A., Rudnitskaya, A., Vlasov, Yu., Di Natale, C., Mazzone, E., and D’Amico, A. (2000) Application of Electronic Tongue for Qualitative and Quantitative Analysis of Complex Liquid Media, Sensors and Actuators B 65, 232–234.CrossRefGoogle Scholar
  40. Legin, A., Smirnova, A., Rudnitskaya, A., Lvova, L., Suglobova, E., and Vlasov, Yu. (1999c) Chemical Sensor Array for Multicomponent Analysis of Biological Liquids, Analytica Chimica Acta 385, 131–135.CrossRefGoogle Scholar
  41. Lvova, L., Kim, S. S., Legin, A., Vlasov, Yu., Yang, J. S., Cha, G. S., and Nam H. (2002) All Solid-state Electronic Tongue and its Application for Beverage Analysis, Analytica Chimica Acta 468, 303–314.CrossRefGoogle Scholar
  42. Lvova, L., Legin, A., Vlasov, Yu., Cha, G. S., and Nam, H. (2003) Multicomponent Analysis of Korean Green Tea by Means of Disposable All-solid-state Potentiometric Electronic Tongue Microsystem, Sensors and Actuators B 95, 391–399.CrossRefGoogle Scholar
  43. Lvova, L., Martinelli, E., Mazzone, E., Pede, A., Paolesse, R., Di Natale, C., and D’Amico, A. (in press a) Electronic Tongue Based on an Array of Metallic Potentiometric Sensors, Atlanta.Google Scholar
  44. Lvova, L., Paolesse, R., Di Natale, C., and D’Amico, A. (in press b) Detection of Alcohols in Beverages: An Application of Porphyrin-based Electronic Tongue, Sensors and Actuators B.Google Scholar
  45. Lvova, L., Verrelli, G., Paolesse, R., Di Natale, C., and D’Amico A. (2004) An Application of Porphyrine-based “Electronic Tongue” System for “Verdicchio” Wine Analysis, In Proceedings of Eurosensors XVIII, September 12–15, Rome, Italy, pp. 385–386.Google Scholar
  46. Martens, H. and Naes, T. (1989) Multivariate Calibration, London, Wiley.MATHGoogle Scholar
  47. Martinez-Mez, R., Soto, J., Garcia-Breijo, E., Gil, L., Ibez, J., and Gadea, E. (2005a) A Multi-sensor in Thick-film Technology for Water Quality Control, Sensors and Actuators A 120, 589–595.CrossRefGoogle Scholar
  48. Martinez-Mez, R., Soto, J., Garcia-Breijo, E., Gil, L., Ibez, J., and Llobet, E. (2005b) An “electronic Tongue” design for the Qualitative Analysis of Natural Waters, Sensors and Actuators B 104, 302–307.CrossRefGoogle Scholar
  49. Martinez-Mez, R., Soto, J., Gil, L., Garcia-Breijo, E., Ibez, J., Gadea, E., Llobet, E. (2005c) Electronic Tongue for Quantitative Analysis of Water Using Thick-film Technology, In Proceedings of ISOEN’11, April 13–15, Barcelona, Spain, pp. 136–137.Google Scholar
  50. Massart, D. L., Vandegiste, B. G., Deming, S. N., Michotte, Y., Kaufmann, L. (1988) Data Handling in Science and Technology. Vol. 2: Chemometrics: A Textbook, Amsterdam, The Netherlands, Elsevier.Google Scholar
  51. Moreno, L., Bratov, A., Abramova, N., Jimenez, C., and Dominguez, C. (2005) Multi-sensor Array Used as an Electronic Tongue for Mineral Water Analysis, In Proceedings of ISOEN’11, April 13–15, Barcelona, Spain, pp. 103–105.Google Scholar
  52. Mortensen, J., Legin, L., Ipatov, A., Rudnitskaya, A., Vlasov, Yu., and Hjuler, K. (2000) A Flow Injection System Based on Chalcogenide Glass Sensors for the Determination of Heavy Metals, Analytica Chimica Acta 403, 273–277.CrossRefGoogle Scholar
  53. Nam, H., Cha, G. S., Jeon, Y. H., Kim, J. D., Seo, S. S., Shim, J. H., and Shim, J. H., Artificial Neural Network Analysis and Classification of Beverage Tastes with Solid-state Sensor Array, In Proceedings of Pittcon’05 Conference, Orlando, Florida, February 27–March 4, 2005, 2050–10.Google Scholar
  54. Olsson, J., Winquist, F., and Lundstrm, I. (2005) A Self-polishing Electronic Tongue, In Proceedings of Eurosensors XIX, September 11–14, 2005, Barcelona, Spain, TA21.Google Scholar
  55. Otto, M. and Thomas, J. D. R. (1985) Analytical Chemistry 57, 2647.CrossRefGoogle Scholar
  56. Paolesse, R., Di Natale, C., Burgio, M., Martinelli, E., Mazzone, E., Palleschi, G., and D’Amico, A. (2003) Porphyrin-based array of cross-selective electrodes for analysis of liquid samples, Sensors and Actuators B 95, 400–405.CrossRefGoogle Scholar
  57. Pearce, T. C., Schiffman, S. S., Nagle, H. T., and Gardner, J. W. (2002) (eds.), Handbook of Machine Olfaction: Electronic Nose Technology, New York, Wiley.Google Scholar
  58. Riul Jr., A., dos Santos Jr., D. S., Wohnrath, K., Di Tommazo, R., Carvalho, A. C. P. L. F., Fonseca, F. J., Oliveira Jr., O. N., Taylor, D. M., and Mattoso, L. H. C. (2002) Artificial Taste Sensor: Effcient Combination of Sensors Made from Langmuir–Blodgett Films of Conducting Polymers and a Ruthenium Complex and Self-assembled Films of an Azobenzene Containing Polymer, Langmuir 18, 239–245.CrossRefGoogle Scholar
  59. Riul Jr., A., Malmegrim, R. R., Fonseca, F. J., and Mattoso, L. H. C. (2003) Nano-Assembled Films for Taste Sensor Application, Artificial Organs 27, 469–472.CrossRefGoogle Scholar
  60. Rouessac, F. and Rouessac, A. (2002) Chemical Analysis. Mordern Instrumental Methods and Techniques, New York, Wiley, 445 pp.Google Scholar
  61. Rudnitskaya, A., Delgadillo, I., Legin, A., Rocha, S., Da Gosta, A.-M., and Simoes, T. (2005) Analysis of Port Wines Using the Electronic Tongue, In Proceedings of ISOEN’11, April 13–15, Barcelona, Spain, pp. 178–179.Google Scholar
  62. Rudnitskaya, A., Delgadillo, I., Rocha, S. M., Costa, A. M., and Legin, A. (2006) Quality Valuation of Cork from Quercus suber L. by the Electronic Tongue, Analytica Chimica Acta 563, 315–318.CrossRefGoogle Scholar
  63. Rudnitskaya, A., Ehlert, A., Legin, A., Vlasov, Yu., and Buttgenbach, S. (2001) Multisensor System on the Basis of an Array of Non-specific Chemical Sensors and Artificial Neural Networks for Determination of Inorganic Pollutants in a Model Groundwater, Talanta 55, 425–431.CrossRefGoogle Scholar
  64. Sakai, H., Iiyama, S., and Toko, K. (2000) Evaluation of water quality and pollution using multichannel sensors, Sensors and Actuators B 66, 251–255.CrossRefGoogle Scholar
  65. Sanz Alaejos, M. and Garcia Montelongo, F. J. (2004) Chemical Review 104, 3239–3265.CrossRefGoogle Scholar
  66. Sderstrm, C., Boren, H., Winquist, F., and Krantz-Rlcker, C. (2003) Use of an Electronic Tongue to Analyze Mold Growth in Liquid Media, International Journal of Food Microbiology 83, 253–261.CrossRefGoogle Scholar
  67. Sderstrm, C., Rudnitskaya, A., Legin, A., and Krantz-Rlcker, C. (2005) Differentiation of Four Aspergillus Species and one Zygosaccharomyces with Two Electronic Tongues Based on Different Measurement Techniques, Journal of Biotechnology 119, 300–308.CrossRefGoogle Scholar
  68. Sderstrm, C., Winquist, F., Krantz-Rlcker, C. (2003) Recognition of Six Microbial Species with an Electronic Tongue, Sensors and Actuators B 89, 248–255.CrossRefGoogle Scholar
  69. Sehra, G., Cole, M., and Gardner, J. W. (2004) Sensors and Actuators B 103, 233.CrossRefGoogle Scholar
  70. Sohn, Y. S., Goodey, A., Anslyn, E. V., McDevitt, J. T., Shear, J. B., and Neikirk, D. P. (2005) Biosensors and Bioelectronics 21, 303–312.CrossRefGoogle Scholar
  71. Toko, K. (1996) Taste Sensor with Global Sensitivity, Material Science and Engineering C 4, 69–82.CrossRefGoogle Scholar
  72. Toko, K. (2000a) Sensors and Actuators B 64, 205.CrossRefGoogle Scholar
  73. Toko, K. (2000b) Taste Sensor, Sensors and Actuators B 64, 205–215.CrossRefGoogle Scholar
  74. Verrelli, G., Francioso, L., Paolesse, R., Siciliano, P., Di Natale, C., and D’Amico, A. (2005) Electronic Tongue Based on Silicon Miniaturized Potentiometric Sensors, In Proceedings of EUROSENSORS XIX, September 11–14, Barcelona, Spain, TA24.Google Scholar
  75. Vlasov, Yu. and Legin, A. (1998) Fresenius Journal of Analytical Chemistry 361, 255.CrossRefGoogle Scholar
  76. Vlasov, Yu., Legin, A., and Rudnitskaya, A. (1997) Cross-sensitivity Evaluation of Chemical Sensors for Electronic Tongue: Determination of Heavy Metal Ions, Sensors Actuators B 44, 532–537.CrossRefGoogle Scholar
  77. Wang, J. (2006) Analytical Electrochemistry, 3rd ed., New York, Wiley, 250 pp.Google Scholar
  78. Winquist, F., Bjorklund, R., Krantz-Rulcker, C., Lundstrom, I., Ostergren, K., and Skoglund, T. (2005) An Electronic Tongue in the Dairy Industry, Sensors and Actuators B 111/112, 299–304.CrossRefGoogle Scholar
  79. Winquist, F., Holmin, S., Krantz-Rlcker, C., Wide, P., and Lundstrm, I. (2000) A hybrid electronic tongue, Analytica Chimica Acta 406, 147–157.CrossRefGoogle Scholar
  80. Winquist, F. and Lundstrm, I. (1997) An Electronic Tongue Based on Voltammetry, Analytica Chimica Acta 357, 21–31.CrossRefGoogle Scholar
  81. Winquist, F., Lundstrm, I., and Wide, P. (1999) The Combination of an Electronic Tongue and an Electronic Nose, Sensors and Actuators B 58, 512–517.CrossRefGoogle Scholar
  82. Wold, H. (1966) Estimation of Principal Components and Related Models by Iterative Least Squares. In P. R. Krishnaiaah (ed.), Multivariate Analysis, New York, Academic Press, pp. 391–420.Google Scholar
  83. Yoon, H. J., Shin, J. H., Lee, S. D., Nam, H., Cha, G. S., Strong, T. D., and Brown, R. B. (2000) Solid-state Ion Sensors with a Liquid Junction-free Polymer Membrane-based Reference Electrode for Blood Analysis, Sensors and Actuators B 64, 8–14.CrossRefGoogle Scholar
  84. Yoshinobu, T., Iwasaki, H., Ui, Y., Furuichi, K., Ermolenko, Yu., Mourzina, Yu., Wagner, T., Nather, N., and Schning, M. J. (2005) The Light-addressable Potentiometric Sensor for Multi-ion Sensing and Imaging, Methods 37, 94–102.CrossRefGoogle Scholar
  85. Zhang, C. and Suslick, K. S. (2005) Journal of American Chemical Society 127, 11548–11549.CrossRefGoogle Scholar
  86. Hauptmann, P., Borngraeber, R., Schroeder, J., von-Guericke, O., and Auge, J. (2000) IEEE/EIA International Frequency Control Symposium and Exhibition, p. 22.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • L. Lvova
    • 1
  • P. Paolesse
    • 1
    • 3
  • C. Di Natale
    • 2
    • 3
  • E. Martinelli
    • 2
  • E. Mazzone
    • 2
  • A. Orsini
    • 2
  • A. D′Amico
    • 2
    • 4
  1. 1.Department of Chemical Science and TechnologiesUniversity of RomeRomeItaly
  2. 2.Department of Electronic EngineeringUniversity of RomeRomeItaly
  3. 3.CNR-IMM RomeRomeItaly
  4. 4.CNR-IDAC RomeRomeItaly

Personalised recommendations