First-Order Mereotopology

  • Ian Pratt-Hartmann

Keywords

Hull Topo Summing Tame 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J.W. (1924a). An example of a simply connected surface bounding a region which is not simply connected. Proceedings of the National Academy of Sciences of the United States of America, 10(1):8–10.CrossRefGoogle Scholar
  2. Alexander, J.W. (1924b). On the subdivision of 3-space by a polyhedron. Proceedings of the National Academy of Sciences of the United States of America, 10(1):6–8.CrossRefGoogle Scholar
  3. Biacino, L. and Gerla, G. (1991). Connection structures. Notre Dame Journal of Formal Logic, 32(2):242–247.CrossRefGoogle Scholar
  4. Bochnak, J., Coste, M., and Roy, M.-F. (1998). Real Algebraic Geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Folge. Springer Berlin.Google Scholar
  5. Cantone, D. and Cutello, V. (1994). Decision algorithms for elementary topology I. Topological syllogistics with set and map constructs, connectedness and cardinailty composition. Communications on Pure and Applied Mathematics, XLVII:1197–1217.CrossRefGoogle Scholar
  6. Chang, C.C. and Keisler, H.J. (1990). Model Theory. North Holland, Amsterdam, 3rd edition.Google Scholar
  7. Clarke, B.L. (1981). A calculus of individuals based on “connection”. Notre Dame Journal of Formal Logic, 22(3):204–218.CrossRefGoogle Scholar
  8. Clarke, B.L. (1985). Individuals and points. Notre Dame Journal of Formal Logic, 26(1):61–75.CrossRefGoogle Scholar
  9. Davis, E., Gotts, N.M., and Cohn, A.G. (1999). Constraint networks of topological relations and convexity. Constraints, 4(3):241–280.CrossRefGoogle Scholar
  10. de Laguna, T. (1922a). The nature of space–I. The Journal of Philosophy, 19:393–407.CrossRefGoogle Scholar
  11. de Laguna, T. (1922b). The nature of space–II. The Journal of Philosophy, 19:421–440.CrossRefGoogle Scholar
  12. de Laguna, T. (1922c). Point, line, and surface as sets of solids. The Journal of Philosophy, 19:449–461.CrossRefGoogle Scholar
  13. Diestel, R. (1991). Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, New York.Google Scholar
  14. Dimov, G. and Vakarelov, D. (2006). Contact algebras and relation-based theory of space: a proximity approach I. Fundamenta Informaticae, 74:209–249.Google Scholar
  15. Dornheim, C. (1998). Undecidability of plane polygonal mereotopology. In Cohn, A.G., Schubert, L.K., and Schubert, S.C., editors, Principles of Knowledge Representation and Reasoning: Proc. 6th International Conference (KR ‘98), pages 342–353. Morgan Kaufmann, San Francisco.Google Scholar
  16. Düntsch, I. and Winter, M. (2005). A representation theorem for Boolean contact algebras. Theoretical Computer Science, 347:498–512.CrossRefGoogle Scholar
  17. Egenhofer, M.J. (1991). Reasoning about binary topological relations. In Günther, O. and Schek, H.-J., editors, Advances in Spatial databases, SSD ‘91 Proceedings, volume 525 of Lecture Notes in Computer Science, pages 143–160. Springer, Berlin.Google Scholar
  18. Erlich, G., Even, S., and Tarjan, R.E. (1976). Intersection graphs of curves in the plane. Journal of Combinatorial Theory B, 21:8–20.CrossRefGoogle Scholar
  19. Gotts, N.M., Gooday, J.M., and Cohn, A.G. (1996). A connection based approach to commonsense topological description and reasoning. Monist, 79(1): 51–75.Google Scholar
  20. Hodges, W. (1993). Model Theory, volume 42 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge.Google Scholar
  21. Kelley, J.L. (1955). General Topology, volume 27 of Graduate Texts in Mathematics. Springer, New York.Google Scholar
  22. Koppelberg, S. (1989). Handbook of Boolean Algebras, volume 1. North-Holland, Amsterdam.Google Scholar
  23. Kratochvíl, J. (1988). String graphs II: Recognizing string graphs is NP-hard. Journal of Combinatorial Theory B, 52:67–78.CrossRefGoogle Scholar
  24. Kuijpers, B., Paradaens, J., and van den Bussche, J. (1995). Lossless representation of topological spatial data. In Egenhofer, M.J. and Herring, J.R., editors, Proc. 4th International Symposium on Large Spatial Databases, volume 951 of Lecture Notes in Computer Science, pages 1–13. Springer, Berlin.Google Scholar
  25. Massey, W.S. (1967). Algebraic Topology : an Introduction. Harcourt, Brace & World, New York.Google Scholar
  26. Moise, E. (1977). Geometric Topology in Dimensions 2 and 3, volume 47 of Graduate Texts in Mathematics. Springer, New York.Google Scholar
  27. Newman, M.H.A. (1964). Elements of the Topology of Plane Sets of Points. Cambridge University Press, Cambridge.Google Scholar
  28. Nutt, W. (1999). On the translation of qualitative spatial reasoning problems into modal logics. In Burgard, W., Christaller, T., and Cremers, A., editors, Advances in Artificial Intelligence, Proc. 23rd Annual German Conference on Artificial Intelligence, KI’99, volume 1701 of Lecture Notes in Computer Science, pages 113–124, Springer, Berlin.Google Scholar
  29. Papadimitriou, C.H., Suciu, D., and Vianu, V. (1999). Topological queries in spatial databases. Journal of Computer and System Sciences, 58(1):29–53.CrossRefGoogle Scholar
  30. Pratt, I. (1999). First-order spatial representation languages with convexity. Spatial Cognition and Computation, 1:181–204.CrossRefGoogle Scholar
  31. Pratt, I. and Lemon, O. (1997). Ontologies for plane, polygonal mereotopology. Notre Dame Journal of Formal Logic, 38(2):225–245.CrossRefGoogle Scholar
  32. Pratt, I. and Schoop, D. (1998). A complete axiom system for polygonal mereotopology of the real plane. Journal of Philosophical Logic, 27(6):621–658.CrossRefGoogle Scholar
  33. Pratt, I. and Schoop, D. (2000). Expressivity in polygonal, plane mereotopology. Journal of Symbolic Logic, 65(2):822–838.CrossRefGoogle Scholar
  34. Pratt, I. and Schoop, D. (2002). Elementary polyhedral mereotopology. Journal of Philosophical Logic, 31:461–498.CrossRefGoogle Scholar
  35. Pratt-Hartmann, I. (2002). A topological constraint language with component counting. Journal of Applied Non-Classical Logics, 12(3–4):441–467.CrossRefGoogle Scholar
  36. Randell, D.A., Cui, Z., and Cohn, A.G. (1992). A spatial logic based on regions and connection. In Nebel, B., Rich, C., and Swartout, W., editors, Principles of Knowledge Representation and Reasoning: Proc. 3rd International Conference (KR ‘92), pages 165–176. Morgan Kaufmann, San Francisco.Google Scholar
  37. Renz, J. and Nebel, B. (1997). On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the region connection calculus. In Proc. 15th International Joint Conference on Artificial Intelligence (IJCAI 97), pages 522–527. Morgan Kaufmann, San Francisco.Google Scholar
  38. Roeper, P. (1997). Region-based topology. Journal of Philosophical Logic, 26:251–309.CrossRefGoogle Scholar
  39. Rudin, M.E. (1958). An unshellable triangulation of a tetrahedron. Bulletin of the American Mathematical Society, 64:90–91.CrossRefGoogle Scholar
  40. Schaefer, M., Sedgwick, E., and Štefankovič, D. (2003). Recognizing string graphs in NP. Journal of Computer and System Sciences, 67:365–380.CrossRefGoogle Scholar
  41. Schaefer, M. and Štefankovič, D. (2004). Decidability of string graphs. Journal of Computer and System Sciences, 68:319–334.CrossRefGoogle Scholar
  42. Schoop, D. (1999). A Logical Approach to Mereotopology. PhD thesis, Department of Computer Science, University of Manchester, Manchester, England.Google Scholar
  43. Simons, P. (1987). Parts: a Study in Ontology. Clarendon Press, Oxford.Google Scholar
  44. Steen, L.A. and Seebach, J.A. (1995). Counterexamples in Topology. Dover Publications, New York.Google Scholar
  45. Tarski, A. (1956). Foundations of the geometry of solids. In Logic, Semantics and Metamathematics, pages 24–29. Clarendon Press, Oxford.Google Scholar
  46. van den Dries, L. (1998). Tame Topology and O-Minimal Structures, volume 248 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge.Google Scholar
  47. Whitehead, A.N. (1919). An Enquiry Concerning the Principles of Natural Knowledge. Cambridge University Press, Cambridge.Google Scholar
  48. Whitehead, A.N. (1920). The Concept of Nature. Cambridge University Press, Cambridge.Google Scholar
  49. Whitehead, A.N. (1929). Process and Reality. The MacMillan Company, New York.Google Scholar
  50. Wilson, R.J. (1979). Introduction to Graph Theory. Longman, London.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Ian Pratt-Hartmann
    • 1
  1. 1.University of ManchesterUK

Personalised recommendations