Skip to main content

The Immune Response Under Stress: Class I HLA Presentation of Host-Derived Peptides

  • Chapter
Heat Shock Proteins: Potent Mediators of Inflammation and Immunity

Part of the book series: Heat Shock Proteins ((HESP,volume 1))

  • 738 Accesses

Abstract

Major histocompatibility complex (MHC) class I molecules are found at the surface of all nucleated cells. Class I molecules function as immune sentries by scanning the intracellular proteome and then reflecting the proteome at the cell surface. Through class I presented peptides, T lymphocytes and other immune effector cells can continuously survey the intracellular proteome. Viral infection and cancerous transformation results in the presentation of peptides not found on healthy cells. Class I presented peptides therefore act to distinguish infected and cancerous cells in the eyes of the immune response. Here, we review how class I molecules reflect host cell stress resulting from infection and cancerous transformation. Class I molecules display peptides derived from heat shock proteins on both cancerous and virus-infected cells, and these peptides are clearly recognized by the immune response. The class I of diseased cells also reveal less obvious stress-related signals: Peptide fragments of proteins involved in cell homeostasis act to distinguish infected or cancerous cells. Finally, peptides derived from particular host proteins act as broad indicators of cellular stress, distinguishing both cancerous and virus-infected cells. These class I presented peptides are positioned to influence adaptive and innate immune responses to cellular stress

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas, A. K., Lichtman, A. H. and Pober, J. S. (2000) Cellular and Molecular Immunology. W.B. Saunders, Philadelphia.

    Google Scholar 

  • Abdelhaleem, M. (2005) RNA helicases: regulators of differentiation. Clin Biochem 38, 499–503.

    Article  PubMed  CAS  Google Scholar 

  • Alekberova, Z. S., Parfanovich, M. I., Nasonova, V. A. and Zhdanov, V. M. (1975) Molecular pathogenesis of systemic lupus erythematosus. Arch Virol 47, 109–21.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, M. H., Bonfill, J. E., Neisig, A., Arsequell, G., Sondergaard, I., Valencia, G., Neefjes, J., Zeuthen, J., Elliott, T. and Haurum, J. S. (1999) Phosphorylated peptides can be transported by TAP molecules, presented by class I MHC molecules, and recognized by phosphopeptide-specific CTL. J Immunol 163, 3812–8.

    PubMed  CAS  Google Scholar 

  • Aragon, T., de la Luna, S., Novoa, I., Carrasco, L., Ortin, J. and Nieto, A. (2000) Eukaryotic translation initiation factor 4GI is a cellular target for NS1 protein, a translational activator of influenza virus. Mol Cell Biol 20, 6259–68.

    Article  PubMed  CAS  Google Scholar 

  • Bates, G. J., Nicol, S. M., Wilson, B. J., Jacobs, A. M., Bourdon, J. C., Wardrop, J., Gregory, D. J., Lane, D. P., Perkins, N. D. and Fuller-Pace, F. V. (2005) The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. Embo J 24, 543–53.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, C., Diesinger, I., Brass, N., Steinhart, H., Iro, H. and Meese, E. U. (2001) Translation initiation factor eIF-4G is immunogenic, overexpressed, and amplified in patients with squamous cell lung carcinoma. Cancer 92, 822–9.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, S., Groh, V., Wu, J., Steinle, A., Phillips, J. H., Lanier, L. L. and Spies, T. (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–9.

    Article  PubMed  CAS  Google Scholar 

  • Botzler, C., Li, G., Issels, R. D. and Multhoff, G. (1998) Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response. Cell Stress & Chaperones 3, 6–11.

    Article  CAS  Google Scholar 

  • Cahill, D. P., Kinzler, K. W., Vogelstein, B. and Lengauer, C. (1999) Genetic instability and darwinian selection in tumours. Trends Cell Biol 9, M57–60.

    Article  PubMed  CAS  Google Scholar 

  • Calderwood, S. K., Theriault, J. R. and Gong, J. (2005) Message in a bottle: Role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol 35, 2518–27.

    Article  PubMed  CAS  Google Scholar 

  • Carter, P. S., Jarquin-Pardo, M. and De Benedetti, A. (1999) Differential expression of Myc1 and Myc2 isoforms in cells transformed by eIF4E: evidence for internal ribosome repositioning in the human c-myc 5 ′UTR . Oncogene 18, 4326–35.

    Article  PubMed  CAS  Google Scholar 

  • Causevic, M., Hislop, R. G., Kernohan, N. M., Carey, F. A., Kay, R. A., Steele, R. J. and Fuller-Pace, F. V. (2001) Overexpression and poly-ubiquitylation of the DEAD-box RNA helicase p68 in colorectal tumours. Oncogene 20, 7734–43.

    Article  PubMed  CAS  Google Scholar 

  • Chothia, C., Boswell, D. R. and Lesk, A. M. (1988) The outline structure of the T-cell alpha beta receptor. Embo J 7, 3745–55.

    PubMed  CAS  Google Scholar 

  • Chung, J., Bachelder, R. E., Lipscomb, E. A., Shaw, L. M. and Mercurio, A. M. (2002) Integrin (alpha 6 beta 4) regulation of eIF-4E activity and VEGF translation: a survival mechanism for carcinoma cells. J Cell Biol 158, 165–74.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, M. J. (2004) Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 23, 3180–8.

    Article  PubMed  CAS  Google Scholar 

  • Collins, R. W. (2004) Human MHC class I chain related (MIC) genes: their biological function and relevance to disease and transplantation. Eur J Immunogenet 31, 105–14.

    Article  PubMed  CAS  Google Scholar 

  • Dengjel, J., Decker, P., Schoor, O., Altenberend, F., Weinschenk, T., Rammensee, H. G. and Stevanovic, S. (2004) Identification of a naturally processed cyclin D1 T-helper epitope by a novel combination of HLA class II targeting and differential mass spectrometry. Eur J Immunol 34, 3644–51.

    Article  PubMed  CAS  Google Scholar 

  • Faure, O., Graff-Dubois, S., Bretaudeau, L., Derre, L., Gross, D. A., Alves, P. M., Cornet, S., Duffour, M. T., Chouaib, S., Miconnet, I., Gregoire, M., Jotereau, F., Lemonnier, F. A., Abastado, J. P. and Kosmatopoulos, K. (2004) Inducible Hsp70 as target of anticancer immunotherapy: Identification of HLA-A*0201 -restricted epitopes. Int J Cancer 108, 863–70.

    Article  PubMed  CAS  Google Scholar 

  • Feigenblum, D. and Schneider, R. J. (1996) Cap-binding protein (eukaryotic initiation factor 4E) and 4E-inactivating protein BP-1 independently regulate cap-dependent translation. Mol Cell Biol 16, 5450–7.

    PubMed  CAS  Google Scholar 

  • Fisk, B., Blevins, T. L., Wharton, J. T. and Ioannides, C. G. (1995) Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 181, 2109–17.

    Article  PubMed  CAS  Google Scholar 

  • Flad, T., Mueller, L., Dihazi, H., Grigorova, V., Bogumil, R., Beck, A., Thedieck, C., Mueller, G. A., Kalbacher, H. and Mueller, C. A. (2006) T cell epitope definition by differential mass spectrometry: identification of a novel, immunogenic HLA-B8 ligand directly from renal cancer tissue. Proteomics 6, 364–74.

    Article  PubMed  CAS  Google Scholar 

  • Frydman, J. (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70, 603–47.

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi-Shimogori, T., Ishii, I., Kashiwagi, K., Mashiba, H., Ekimoto, H. and Igarashi, K. (1997) Malignant transformation by overproduction of translation initiation factor eIF4G. Cancer Res 57, 5041–4.

    PubMed  CAS  Google Scholar 

  • Garcia, K. C., Degano, M., Pease, L. R., Huang, M., Peterson, P. A., Teyton, L. and Wilson, I. A. (1998) Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–72.

    Article  PubMed  CAS  Google Scholar 

  • Gaudin, C., Kremer, F., Angevin, E., Scott, V. and Triebel, F. (1999) A hsp70-2 mutation recognized by CTL on a human renal cell carcinoma. J Immunol 162, 1730–8.

    PubMed  CAS  Google Scholar 

  • Gingras, A. C. and Sonenberg, N. (1997) Adenovirus infection inactivates the translational inhibitors 4E-BP1 and 4E-BP2. Virology 237, 182–6.

    Article  PubMed  CAS  Google Scholar 

  • Gingras, A. C., Svitkin, Y., Belsham, G. J., Pause, A. and Sonenberg, N. (1996) Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proc Natl Acad Sci U S A 93, 5578–83.

    Article  PubMed  CAS  Google Scholar 

  • Gradi, A., Svitkin, Y. V., Imataka, H. and Sonenberg, N. (1998) Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci U S A 95, 11089–94.

    Article  PubMed  CAS  Google Scholar 

  • Haghighat, A., Svitkin, Y., Novoa, I., Kuechler, E., Skern, T. and Sonenberg, N. (1996) The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J Virol 70, 8444–50.

    PubMed  CAS  Google Scholar 

  • Herberts, C. A., van Gaans-van den Brink, J., van der Heeft, E., van Wijk, M., Hoekman, J., Jaye, A., Poelen, M. C., Boog, C. J., Roholl, P. J., Whittle, H., de Jong, A. P. and van Els, C. A. (2003) Autoreactivity against induced or upregulated abundant self-peptides in HLA-A*0201 following measles virus infection. Hum Immunol 64, 44–55.

    Article  PubMed  CAS  Google Scholar 

  • Hickman, H. D., Luis, A. D., Bardet, W., Buchli, R., Battson, C. L., Shearer, M. H., Jackson, K. W., Kennedy, R. C. and Hildebrand, W. H. (2003) Cutting edge: class I presentation of host peptides following HIV infection. Journal of Immunology 171, 22–6.

    CAS  Google Scholar 

  • Ju, T. and Cummings, R. D. (2002) A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci U S A 99, 16613–8.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. P., Wang, X., Zhang, J., Suh, G. Y., Benjamin, I. J., Ryter, S. W. and Choi, A. M. (2005) Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38 beta MAPK and heat shock factor-1. J Immunol 175, 2622–9.

    PubMed  CAS  Google Scholar 

  • Konecny, G. E., Meng, Y. G., Untch, M., Wang, H. J., Bauerfeind, I., Epstein, M., Stieber, P., Vernes, J. M., Gutierrez, J., Hong, K., Beryt, M., Hepp, H., Slamon, D. J. and Pegram, M. D. (2004) Association between HER-2/neu and vascular endothelial growth factor expression predicts clinical outcome in primary breast cancer patients. Clin Cancer Res 10, 1706–16.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, M. (1991) An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 115, 887–903.

    Article  PubMed  CAS  Google Scholar 

  • Krahenbuhl, O., Rey, C., Jenne, D., Lanzavecchia, A., Groscurth, P., Carrel, S. and Tschopp, J. (1988) Characterization of granzymes A and B isolated from granules of cloned human cytotoxic T lymphocytes. J Immunol 141, 3471–7.

    PubMed  CAS  Google Scholar 

  • Laduron, S., Deplus, R., Zhou, S., Kholmanskikh, O., Godelaine, D., De Smet, C., Hayward, S. D., Fuks, F., Boon, T. and De Plaen, E. (2004) MAGE-A1 interacts with adaptor SKIP and the deacetylase HDAC1 to repress transcription. Nucleic Acids Res 32, 4340–50.

    Article  PubMed  CAS  Google Scholar 

  • Lennerz, V., Fatho, M., Gentilini, C., Frye, R. A., Lifke, A., Ferel, D., Wolfel, C., Huber, C. and Wolfel, T. (2005) The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci U S A 102, 16013–8.

    Article  PubMed  CAS  Google Scholar 

  • Loriot, A., De Plaen, E., Boon, T. and De Smet, C. (2006) Transient down-regulation of DNMT1 methyltransferase leads to activation and stable hypomethylation of MAGE-A1 in melanoma cells. J Biol Chem 281, 10118–26.

    Article  PubMed  CAS  Google Scholar 

  • Mandruzzato, S., Brasseur, F., Andry, G., Boon, T. and van der Bruggen, P. (1997) A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med 186, 785–93.

    Article  PubMed  CAS  Google Scholar 

  • Marth, J. D., Overell, R. W., Meier, K. E., Krebs, E. G. and Perlmutter, R. M. (1988) Translational activation of the lck proto-oncogene. Nature 332, 171–3.

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer, M., Florian, S., Krauth, M. T., Aichberger, K. J., Bilban, M., Marculescu, R., Printz, D., Fritsch, G., Wagner, O., Selzer, E., Sperr, W. R., Valent, P. and Sillaber, C. (2004) Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res 64, 3148–54.

    Article  PubMed  CAS  Google Scholar 

  • Multhoff, G. and Botzler, C. (1998) Heat-shock proteins and the immune response. Ann. N. Y. Acad. Sci. 851, 86–93.

    Article  PubMed  CAS  Google Scholar 

  • Ohlmann, T., Rau, M., Pain, V. M. and Morley, S. J. (1996) The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E. Embo J 15, 1371–82.

    PubMed  CAS  Google Scholar 

  • Ou, S. H., Wu, F., Harrich, D., Garcia-Martinez, L. F. and Gaynor, R. B. (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69, 3584–96.

    PubMed  CAS  Google Scholar 

  • Parkhurst, M. R., Riley, J. P., Igarashi, T., Li, Y., Robbins, P. F. and Rosenberg, S. A. (2004) Immunization of patients with the hTERT:540-548 peptide induces peptide-reactive T lymphocytes that do not recognize tumors endogenously expressing telomerase. Clin Cancer Res 10, 4688–98.

    Article  PubMed  CAS  Google Scholar 

  • Ropke, M., Hald, J., Guldberg, P., Zeuthen, J., Norgaard, L., Fugger, L., Svejgaard, A., Van der Burg, S., Nijman, H. W., Melief, C. J. and Claesson, M. H. (1996) Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide. Proc Natl Acad Sci U S A 93, 14704–7.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg, J. K., Fast, N. M. and Nixon, D. F. (2001) Functional heterogeneity of cytokines and cytolytic effector molecules in human CD8+ T lymphocytes. J Immunol 167, 181–7.

    PubMed  CAS  Google Scholar 

  • Saric, T., Chang, S. C., Hattori, A., York, I. A., Markant, S., Rock, K. L., Tsujimoto, M. and Goldberg, A. L. (2002) An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol 3, 1169–76.

    Article  PubMed  CAS  Google Scholar 

  • Serwold, T., Gonzalez, F., Kim, J., Jacob, R. and Shastri, N. (2002) ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–3.

    Article  PubMed  CAS  Google Scholar 

  • Shastri, N., Schwab, S. and Serwold, T. (2002) Producing nature’s gene-chips: the generation of peptides for display by MHC class I molecules. Annu Rev Immunol 20, 463–93.

    Article  PubMed  CAS  Google Scholar 

  • Soung, Y. H., Lee, J. W., Kim, S. Y., Sung, Y. J., Park, W. S., Nam, S. W., Kim, S. H., Lee, J. Y., Yoo, N. J. and Lee, S. H. (2005) Caspase-8 gene is frequently inactivated by the frameshift somatic mutation 1225_1226delTG in hepatocellular carcinomas. Oncogene 24, 141–7.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, P. (2002a) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20, 395–425.

    Article  CAS  Google Scholar 

  • Srivastava, P. (2002b) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2, 185–94.

    Article  CAS  Google Scholar 

  • Steinle, A., Li, P., Morris, D. L., Groh, V., Lanier, L. L., Strong, R. K. and Spies, T. (2001) Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 53, 279–87.

    Article  PubMed  CAS  Google Scholar 

  • Tan, A., Bitterman, P., Sonenberg, N., Peterson, M. and Polunovsky, V. (2000) Inhibition of Myc-dependent apoptosis by eukaryotic translation initiation factor 4E requires cyclin D1. Oncogene 19, 1437–47.

    Article  PubMed  CAS  Google Scholar 

  • ter Meulen, V. and Liebert, U. G. (1993) Measles virus-induced autoimmune reactions against brain antigen. Intervirology 35, 86–94.

    PubMed  CAS  Google Scholar 

  • Terhorst, C., Parham, P., Mann, D. L. and Strominger, J. L. (1976) Structure of HLA antigens: amino-acid and carbohydrate compositions and NH2-terminal sequences of four antigen preparations. Proc Natl Acad Sci U S A 73, 910–4.

    Article  PubMed  CAS  Google Scholar 

  • Van Der Bruggen, P., Zhang, Y., Chaux, P., Stroobant, V., Panichelli, C., Schultz, E. S., Chapiro, J., Van Den Eynde, B. J., Brasseur, F. and Boon, T. (2002) Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 188, 51–64.

    Article  Google Scholar 

  • Ventoso, I., Blanco, R., Perales, C. and Carrasco, L. (2001) HIV-1 protease cleaves eukaryotic initiation factor 4G and inhibits cap-dependent translation. Proc Natl Acad Sci U S A 98, 12966–71.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, B. J., Bates, G. J., Nicol, S. M., Gregory, D. J., Perkins, N. D. and Fuller-Pace, F. V. (2004) The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Mol Biol 5, 11.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Gendler, S. J. and Franco, A. (2004) Designer glycopeptides for cytotoxic T cell-based elimination of carcinomas. J Exp Med 199, 707–16.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., Lin, C. and Liu, Z. R. (2005) Phosphorylations of DEAD box p68 RNA helicase are associated with cancer development and cell proliferation. Mol Cancer Res 3, 355–63.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Feigenblum, D. and Schneider, R. J. (1994) A late adenovirus factor induces eIF-4E dephosphorylation and inhibition of cell protein synthesis. J Virol 68, 7040–50.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wahl, A., Hawkins, O., Mcmurtrey, C., Hickman-Miller, H., Weidanz, J., Hildebrand, W. (2007). The Immune Response Under Stress: Class I HLA Presentation of Host-Derived Peptides. In: Asea, A.A., Maio, A.D. (eds) Heat Shock Proteins: Potent Mediators of Inflammation and Immunity. Heat Shock Proteins, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5585-0_14

Download citation

Publish with us

Policies and ethics