Skip to main content

Hsp70 Family Members, Danger Signals and Autoimmunity

  • Chapter

Part of the book series: Heat Shock Proteins ((HESP,volume 1))

Abstract

The 70 kiloDalton family of heat shock proteins (Hsp70) are known to stimulate immune responses and have been increasingly implicated in autoimmune conditions. Hsp70 proteins are present in pathogens as well as in healthy cells. They can be expressed constitutively or elevated in response to heat or other cellular stress. Immune responses stimulated by Hsp70 family members include triggering of innate inflammatory responses, enhancing antigen presentation to self-reactive T cells, and cross priming of chaperoned tumor and other self antigens. In this chapter, we present an overview of immunomodulatory activities described for Hsp70 proteins and review the evidence implicating Hsp70 activity in autoimmunity. The ability of Hsp70 to stimulate anti-self tumor immunity and the prospect of using Hsp70 in vaccines or as adjuvants for cancer immunotherapy will be examined. Finally we discuss potential mechanisms by which Hsp70 proteins act as danger signals and regulatory molecules to the immune system

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akira, S., Uematsu, S. and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell 124, 783–801.

    Article  PubMed  CAS  Google Scholar 

  • Angelidis, C. E., Lazaridis, I. and Pagoulatos, G. N. (1999) Aggregation of hsp70 and hsc70 in vivo is distinct and temperature-dependent and their chaperone function is directly related to non-aggregated forms. Eur J Biochem 259, 505–12.

    Article  PubMed  CAS  Google Scholar 

  • Arispe, N., Doh, M. and De Maio, A. (2002) Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress Chaperones 7, 330–8.

    Article  PubMed  CAS  Google Scholar 

  • Arnold-Schild, D., Hanau, D., Spehner, D., Schmid, C., Rammensee, H. G., de la Salle, H. and Schild, H. (1999) Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162, 3757–60.

    PubMed  CAS  Google Scholar 

  • Asea, A., Kabingu, E., Stevenson, M. A. and Calderwood, S. K. (2000a) HSP70 peptide-bearing and peptide-negative preparations act as chaperokines. Cell Stress Chaperones 5, 425–31.

    Article  CAS  Google Scholar 

  • Asea, A., Kraeft, S. K., Kurt-Jones, E. A., Stevenson, M. A., Chen, L. B., Finberg, R. W., Koo, G. C. and Calderwood, S. K. (2000b) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6, 435–42.

    Article  CAS  Google Scholar 

  • Asea, A., Rehli, M., Kabingu, E., Boch, J. A., Bare, O., Auron, P. E., Stevenson, M. A. and Calderwood, S. K. (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277, 15028–34.

    Article  PubMed  CAS  Google Scholar 

  • Basu, S., Binder, R. J., Ramalingam, T. and Srivastava, P. K. (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70 and calreticulin. Immunity 14, 303–313.

    Article  PubMed  CAS  Google Scholar 

  • Basu, S., Binder, R. J., Suto, R., Anderson, K. M. and Srivastava, P. K. (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12, 1539–46.

    Article  PubMed  CAS  Google Scholar 

  • Bausinger, H., Lipsker, D. and Hanau, D. (2002a) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23, 342–3.

    Article  CAS  Google Scholar 

  • Bausinger, H., Lipsker, D., Ziylan, U., Manie, S., Briand, J. P., Cazenave, J. P., Muller, S., Haeuw, J. F., Ravanat, C., de la Salle, H. and Hanau, D. (2002b) Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur. J. Immunol. 32, 3708–13.

    Article  CAS  Google Scholar 

  • Becker, T., Hartl, F. U. and Wieland, F. (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158, 1277–85.

    Article  PubMed  CAS  Google Scholar 

  • Binder, R. J. and Srivastava, P. K. (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 6, 593–9.

    Article  PubMed  CAS  Google Scholar 

  • Binder, R. J., Vatner, R. and Srivastava, P. (2004) The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64, 442–51.

    Article  PubMed  CAS  Google Scholar 

  • Blachere, N. E., Li, Z., Chandawarkar, R. Y., Suto, R., Jaikaria, N. S., Basu, S., Udono, H. and Srivastava, P. K. (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186, 1315–22.

    Article  PubMed  CAS  Google Scholar 

  • Blander, J. M. and Medzhitov, R. (2006) Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–12.

    Article  PubMed  CAS  Google Scholar 

  • Bodman-Smith, M. D., Corrigall, V. M., Berglin, E., Cornell, H. R., Tzioufas, A. G., Mavragani, C. P., Chan, C., Rantapaa-Dahlqvist, S. and Panayi, G. S. (2004) Antibody response to the human stress protein BiP in rheumatoid arthritis. Rheumatology (Oxford) 43, 1283–7.

    Article  CAS  Google Scholar 

  • Bodman-Smith, M. D., Corrigall, V. M., Kemeny, D. M. and Panayi, G. S. (2003) BiP, a putative autoantigen in rheumatoid arthritis, stimulates IL-10-producing CD8-positive T cells from normal individuals. Rheumatology (Oxford) 42, 637–44.

    Article  CAS  Google Scholar 

  • Boyman, O., Conrad, C., Dudli, C., Kielhorn, E., Nickoloff, B. J. and Nestle, F. O. (2005) Activation of dendritic antigen-presenting cells expressing common heat shock protein receptor CD91 during induction of psoriasis. Br J Dermatol 152, 1211–8.

    Article  PubMed  CAS  Google Scholar 

  • Breloer, M., Fleischer, B. and von Bonin, A. (1999) In vivo and in vitro activation of T cells after administration of Ag- negative heat shock proteins. J Immunol 162, 3141–7.

    PubMed  CAS  Google Scholar 

  • Brownlie, R. J., Myers, L. K., Wooley, P. H., Corrigall, V. M., Bodman-Smith, M. D., Panayi, G. S. and Thompson, S. J. (2006) Treatment of murine collagen-induced arthritis by the stress protein BiP via interleukin-4-producing regulatory T cells: a novel function for an ancient protein. Arthritis Rheum 54, 854–63.

    Article  PubMed  CAS  Google Scholar 

  • Bulut, Y., Michelsen, K. S., Hayrapetian, L., Naiki, Y., Spallek, R., Singh, M. and Arditi, M. (2005) Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem 280, 20961–7.

    Article  PubMed  CAS  Google Scholar 

  • Callahan, M. K., Chaillot, D., Jacquin, C., Clark, P. R. and Menoret, A. (2002) Differential acquisition of antigenic peptides by Hsp70 and Hsc70 under oxidative conditions. J Biol Chem 277, 33604–9.

    Article  PubMed  CAS  Google Scholar 

  • Ciupitu, A. M., Petersson, M., O’Donnell, C. L., Williams, K., Jindal, S., Kiessling, R. and Welsh, R. M. (1998) Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. J Exp Med 187, 685–91.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, A., Turkes, A., Navabi, H., Mason, M. D. and Tabi, Z. (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118, 3631–8.

    Article  PubMed  CAS  Google Scholar 

  • Corrigall, V. M., Bodman-Smith, M. D., Brunst, M., Cornell, H. and Panayi, G. S. (2004) Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum 50, 1164–71.

    Article  PubMed  CAS  Google Scholar 

  • Corrigall, V. M., Bodman-Smith, M. D., Fife, M. S., Canas, B., Myers, L. K., Wooley, P., Soh, C., Staines, N. A., Pappin, D. J., Berlo, S. E., van Eden, W., van Der Zee, R., Lanchbury, J. S. and Panayi, G. S. (2001) The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. Journal of Immunology 166, 1492–8.

    CAS  Google Scholar 

  • Daniels, G. A., Sanchez-Perez, L., Diaz, R. M., Kottke, T., Thompson, J., Lai, M., Gough, M., Karim, M., Bushell, A., Chong, H., Melcher, A., Harrington, K. and Vile, R. G. (2004) A simple method to cure established tumors by inflammatory killing of normal cells. Nat Biotechnol 22, 1125–32.

    Article  PubMed  CAS  Google Scholar 

  • Del Giudice, G. (1994) Hsp70: a carrier molecule with built-in adjuvanticity. Experientia 50, 1061–6.

    Article  PubMed  CAS  Google Scholar 

  • Delneste, Y., Magistrelli, G., Gauchat, J., Haeuw, J., Aubry, J., Nakamura, K., Kawakami-Honda, N., Goetsch, L., Sawamura, T., Bonnefoy, J. and Jeannin, P. (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17, 353–62.

    Article  PubMed  CAS  Google Scholar 

  • Easton, D. P., Kaneko, Y. and Subjeck, J. R. (2000) The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones 5, 276–90.

    Article  PubMed  CAS  Google Scholar 

  • Ehl, S., Hombach, J., Aichele, P., Rulicke, T., Odermatt, B., Hengartner, H., Zinkernagel, R. and Pircher, H. (1998) Viral and bacterial infections interfere with peripheral tolerance induction and activate CD8+ T cells to cause immunopathology. J Exp Med 187, 763–74.

    Article  PubMed  CAS  Google Scholar 

  • Facciponte, J. G., MacDonald, I. J., Wang, X. Y., Kim, H., Manjili, M. H. and Subjeck, J. R. (2005) Heat shock proteins and scavenger receptors: role in adaptive immune responses. Immunol Invest 34, 325–42.

    Article  PubMed  CAS  Google Scholar 

  • Feng, H., Zeng, Y., Graner, M. W., Likhacheva, A. and Katsanis, E. (2003) Exogenous stress proteins enhance the immunogenicity of apoptotic tumor cells and stimulate antitumor immunity. Blood 101, 245–52.

    Article  PubMed  CAS  Google Scholar 

  • Fevrier, B. and Raposo, G. (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16, 415–21.

    Article  PubMed  CAS  Google Scholar 

  • Fishelson, Z., Hochman, I., Greene, L. E. and Eisenberg, E. (2001) Contribution of heat shock proteins to cell protection from complement-mediated lysis. Int Immunol 13, 983–91.

    Article  PubMed  CAS  Google Scholar 

  • Flaherty, K. M., DeLuca-Flaherty, C. and McKay, D. B. (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346, 623–8.

    Article  PubMed  CAS  Google Scholar 

  • Galazka, G., Stasiolek, M., Walczak, A., Jurewicz, A., Zylicz, A., Brosnan, C. F., Raine, C. S. and Selmaj, K. W. (2006) Brain-derived heat shock protein 70-peptide complexes induce NK cell-dependent tolerance to experimental autoimmune encephalomyelitis. Journal of Immunology 176, 1588–99.

    CAS  Google Scholar 

  • Gallucci, S. and Matzinger, P. (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13, 114–9.

    Article  PubMed  CAS  Google Scholar 

  • Gao, B. and Tsan, M. F. (2003) Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J. Biol. Chem. 278, 174–9.

    Article  PubMed  CAS  Google Scholar 

  • Gao, B. and Tsan, M. F. (2004) Induction of cytokines by heat shock proteins and endotoxin in murine macrophages. Biochem. Biophys. Res. Commun. 317, 1149–54.

    Article  PubMed  CAS  Google Scholar 

  • Garza, K. M., Chan, S. M., Suri, R., Nguyen, L. T., Odermatt, B., Schoenberger, S. P. and Ohashi, P. S. (2000) Role of antigen-presenting cells in mediating tolerance and autoimmunity. J Exp Med 191, 2021–7.

    Article  PubMed  CAS  Google Scholar 

  • Gastpar, R., Gehrmann, M., Bausero, M. A., Asea, A., Gross, C., Schroeder, J. A. and Multhoff, G. (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65, 5238–47.

    Article  PubMed  CAS  Google Scholar 

  • Geng, H., Zhang, G. M., Xiao, H., Yuan, Y., Li, D., Zhang, H., Qiu, H., He, Y. F. and Feng, Z. H. (2006) HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int J Cancer 118, 2657–64.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos, C. and Welch, W. J. (1993) Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9, 601–34.

    Article  PubMed  CAS  Google Scholar 

  • Han, Z., Truong, Q. A., Park, S. and Breslow, J. L. (2003) Two Hsp70 family members expressed in atherosclerotic lesions. Proc Natl Acad Sci U S A 100, 1256–61.

    Article  PubMed  CAS  Google Scholar 

  • Haug, M., Dannecker, L., Schepp, C. P., Kwok, W. W., Wernet, D., Buckner, J. H., Kalbacher, H., Dannecker, G. E. and Holzer, U. (2005) The heat shock protein Hsp70 enhances antigen-specific proliferation of human CD4+ memory T cells. European Journal of Immunology 35, 3163–72.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, H., Shen, L., Gu, Q. L., Krueger, S. and Chen, S. Y. (2004) Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther 11, 924–32.

    Article  PubMed  CAS  Google Scholar 

  • Heath, W. R., Belz, G. T., Behrens, G. M., Smith, C. M., Forehan, S. P., Parish, I. A., Davey, G. M., Wilson, N. S., Carbone, F. R. and Villadangos, J. A. (2004) Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 199, 9–26.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Q., Richmond, J. F., Suzue, K., Eisen, H. N. and Young, R. A. (2000) In vivo cytotoxic T lymphocyte elicitation by mycobacterial heat shock protein 70 fusion proteins maps to a discrete domain and is CD4(+) T cell independent. J Exp Med 191, 403–8.

    Article  PubMed  CAS  Google Scholar 

  • Janeway, C. A., Jr. and Medzhitov, R. (2002) Innate immune recognition. Annu Rev Immunol 20, 197–216.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J., Prasad, K., Lafer, E. M. and Sousa, R. (2005) Structural basis of interdomain communication in the Hsc70 chaperone. Mol Cell 20, 513–24.

    Article  PubMed  CAS  Google Scholar 

  • Kammerer, R., Stober, D., Riedl, P., Oehninger, C., Schirmbeck, R. and Reimann, J. (2002) Noncovalent association with stress protein facilitates cross-priming of CD8+ T cells to tumor cell antigens by dendritic cells. J Immunol 168, 108–17.

    PubMed  CAS  Google Scholar 

  • Kaufmann, S. H. (1990) Heat shock proteins and the immune response. Immunol Today 11, 129–36.

    Article  PubMed  CAS  Google Scholar 

  • Kroll, T. M., Bommiasamy, H., Boissy, R. E., Hernandez, C., Nickoloff, B. J., Mestril, R. and Caroline Le Poole, I. (2005) 4-Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol 124, 798–806.

    Article  PubMed  CAS  Google Scholar 

  • Kuppner, M. C., Gastpar, R., Gelwer, S., Noessner, E., Ochmann, O., Scharner, A. and Issels, R. D. (2001) The role of heat shock protein (hsp70) in dendritic cell maturation: Hsp70 induces the maturation of immature dentritic cells but reduces DC differentiation from monocyte precursors. Eur. J. Immunol. 31, 1602–1609.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S. and Craig, E. A. (1988) The heat-shock proteins. Annu. Rev. Genet. 22, 631–77.

    Article  PubMed  CAS  Google Scholar 

  • MacAry, P. A., Javid, B., Floto, R. A., Smith, K. G., Oehlmann, W., Singh, M. and Lehner, P. J. (2004) HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity 20, 95–106.

    Article  PubMed  CAS  Google Scholar 

  • Manjili, M. H., Park, J., Facciponte, J. G. and Subjeck, J. R. (2005) HSP110 induces ’danger signals’ upon interaction with antigen presenting cells and mouse mammary carcinoma. Immunobiology 210, 295–303.

    Article  PubMed  CAS  Google Scholar 

  • Manjili, M. H., Park, J. E., Facciponte, J. G., Wang, X. Y. and Subjeck, J. R. (2006) Immunoadjuvant chaperone, GRP170, induces ’danger signals’ upon interaction with dendritic cells. Immunol Cell Biol 84, 203–8.

    Article  PubMed  CAS  Google Scholar 

  • Manjili, M. H., Wang, X. Y., Chen, X., Martin, T., Repasky, E. A., Henderson, R. and Subjeck, J. R. (2003) HSP110-HER2/neu chaperone complex vaccine induces protective immunity against spontaneous mammary tumors in HER-2/neu transgenic mice. J Immunol 171, 4054–61.

    PubMed  CAS  Google Scholar 

  • Martin, C. A., Carsons, S. E., Kowalewski, R., Bernstein, D., Valentino, M. and Santiago-Schwarz, F. (2003) Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (hsp)70 in the rheumatoid joint: possible mechanisms of hsp/DC-mediated cross-priming. J Immunol 171, 5736–42.

    PubMed  CAS  Google Scholar 

  • Massa, C., Melani, C. and Colombo, M. P. (2005) Chaperon and adjuvant activity of hsp70: different natural killer requirement for cross-priming of chaperoned and bystander antigens. Cancer Research 65, 7942–9.

    PubMed  CAS  Google Scholar 

  • Matzinger, P. (1994) Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045.

    PubMed  CAS  Google Scholar 

  • Matzinger, P. (2002) The danger model: a renewed sense of self. Science 296, 301–5.

    Article  PubMed  CAS  Google Scholar 

  • Melcher, A., Todryk, S., Hardwick, N., Ford, M., Jacobson, M. and Vile, R. G. (1998) Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med 4, 581–7.

    Article  PubMed  CAS  Google Scholar 

  • Menoret, A. and Bell, G. (2000) Purification of multiple heat shock proteins from a single tumor sample. J Immunol Methods 237, 119–30.

    Article  PubMed  CAS  Google Scholar 

  • Menoret, A., Patry, Y., Burg, C. and Le Pendu, J. (1995) Co-segregation of tumor immunogenicity with expression of inducible but not constitutive hsp70 in rat colon carcinomas. J Immunol 155, 740–7.

    PubMed  CAS  Google Scholar 

  • Milani, V., Noessner, E., Ghose, S., Kuppner, M., Ahrens, B., Scharner, A., Gastpar, R. and Issels, R. D. (2002) Heat shock protein 70: role in antigen presentation and immune stimulation. International Journal of Hyperthermia 18, 563–75.

    Article  PubMed  CAS  Google Scholar 

  • Millar, D. G., Garza, K. M., Odermatt, B., Elford, A. R., Ono, N., Li, Z. and Ohashi, P. S. (2003) Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat. Med. 9, 1469–76.

    Article  PubMed  CAS  Google Scholar 

  • Moroi, Y., Mayhew, M., Trcka, J., Hoe, M. H., Takechi, Y., Hartl, F. U., Rothman, J. E. and Houghton, A. N. (2000) Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proc. Natl. Acad. Sci. USA 97, 3485–90.

    Article  PubMed  CAS  Google Scholar 

  • Mortaz, E., Redegeld, F. A., Nijkamp, F. P., Wong, H. R. and Engels, F. (2006) Acetylsalicylic acid-induced release of HSP70 from mast cells results in cell activation through TLR pathway. Experimental Hematology 34, 8–18.

    Article  PubMed  CAS  Google Scholar 

  • Multhoff, G., Mizzen, L., Winchester, C. C., Milner, C. M., Wenk, S., Eissner, G., Kampinga, H. H., Laumbacher, B. and Johnson, J. (1999) Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp. Hematol. 27, 1627–36.

    Article  PubMed  CAS  Google Scholar 

  • Multhoff, G., Pfister, K., Gehrmann, M., Hantschel, M., Gross, C., Hafner, M. and Hiddemann, W. (2001) A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 6, 337–44.

    Article  PubMed  CAS  Google Scholar 

  • Mycko, M. P., Cwiklinska, H., Szymanski, J., Szymanska, B., Kudla, G., Kilianek, L., Odyniec, A., Brosnan, C. F. and Selmaj, K. W. (2004) Inducible heat shock protein 70 promotes myelin autoantigen presentation by the HLA class II. J Immunol 172, 202–13.

    PubMed  CAS  Google Scholar 

  • Nakatani, Y., Kaneto, H., Hatazaki, M., Yoshiuchi, K., Kawamori, D., Sakamoto, K., Matsuoka, T., Ogawa, S., Yamasaki, Y. and Matsuhisa, M. (2006) Increased stress protein ORP150 autoantibody production in Type 1 diabetic patients. Diabet Med 23, 216–9.

    Article  PubMed  CAS  Google Scholar 

  • Nolan, A., Weiden, M. D., Hoshino, Y. and Gold, J. A. (2004) Cd40 but not CD154 knockout mice have reduced inflammatory response in polymicrobial sepsis: a potential role for Escherichia coli heat shock protein 70 in CD40-mediated inflammation in vivo. Shock 22, 538–42.

    Article  PubMed  CAS  Google Scholar 

  • Ohashi, P. S. and DeFranco, A. L. (2002) Making and breaking tolerance. Current Opinion in Immunology 14, 744–59.

    Article  PubMed  CAS  Google Scholar 

  • Otterson, G. A., Flynn, G. C., Kratzke, R. A., Coxon, A., Johnston, P. G. and Kaye, F. J. (1994) Stch encodes the ‘ATPase core’ of a microsomal stress 70 protein. Embo J 13, 1216–25.

    PubMed  CAS  Google Scholar 

  • Panayi, G. S., Corrigall, V. M. and Henderson, B. (2004) Stress cytokines: pivotal proteins in immune regulatory networks; Opinion. Curr Opin Immunol 16, 531–4.

    Article  PubMed  CAS  Google Scholar 

  • Pasare, C. and Medzhitov, R. (2003) Toll-like receptors: balancing host resistance with immune tolerance. Curr Opin Immunol 15, 677–82.

    Article  PubMed  CAS  Google Scholar 

  • Pockley, A. G. (2003) Heat shock proteins as regulators of the immune response. Lancet 362, 469–76.

    Article  PubMed  CAS  Google Scholar 

  • Purcell, A. W., Todd, A., Kinoshita, G., Lynch, T. A., Keech, C. L., Gething, M. J. and Gordon, T. P. (2003) Association of stress proteins with autoantigens: a possible mechanism for triggering autoimmunity? Clin Exp Immunol 132, 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Ren, W., Strube, R., Zhang, X., Chen, S. Y. and Huang, X. F. (2004) Potent tumor-specific immunity induced by an in vivo heat shock protein-suicide gene-based tumor vaccine. Cancer Res 64, 6645–51.

    Article  PubMed  CAS  Google Scholar 

  • Santiago-Schwarz, F., Anand, P., Liu, S. and Carsons, S. E. (2001) Dendritic cells (DCs) in rheumatoid arthritis (RA): progenitor cells and soluble factors contained in RA synovial fluid yield a subset of myeloid DCs that preferentially activate Th1 inflammatory-type responses. J Immunol 167, 1758–68.

    PubMed  CAS  Google Scholar 

  • Schroder, M. and Kaufman, R. J. (2005) ER stress and the unfolded protein response. Mutat Res 569, 29–63.

    PubMed  Google Scholar 

  • Skokos, D., Botros, H. G., Demeure, C., Morin, J., Peronet, R., Birkenmeier, G., Boudaly, S. and Mecheri, S. (2003) Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol 170, 3037–45.

    PubMed  CAS  Google Scholar 

  • Somersan, S., Larsson, M., Fonteneau, J. F., Basu, S., Srivastava, P. and Bhardwaj, N. (2001) Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol 167, 4844–52.

    PubMed  CAS  Google Scholar 

  • Sondermann, H., Becker, T., Mayhew, M., Wieland, F. and Hartl, F. U. (2000) Characterization of a receptor for heat shock protein 70 on macrophages and monocytes. Biol Chem 381, 1165–74.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, P. (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2, 185–94.

    Article  PubMed  CAS  Google Scholar 

  • Suto, R. and Srivastava, P. K. (1995) A mechanism for the specific immunogenicity of heat shock protein- chaperoned peptides. Science 269, 1585–8.

    Article  PubMed  CAS  Google Scholar 

  • Suzue, K., Zhou, X., Eisen, H. N. and Young, R. A. (1997) Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc. Natl. Acad. Sci. USA 94, 13146–51.

    Article  PubMed  CAS  Google Scholar 

  • Terlecky, S. R., Chiang, H. L., Olson, T. S. and Dice, J. F. (1992) Protein and peptide binding and stimulation of in vitro lysosomal proteolysis by the 73-kDa heat shock cognate protein. J Biol Chem 267, 9202–9.

    PubMed  CAS  Google Scholar 

  • Thery, C., Regnault, A., Garin, J., Wolfers, J., Zitvogel, L., Ricciardi-Castagnoli, P., Raposo, G. and Amigorena, S. (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147, 599–610.

    Article  PubMed  CAS  Google Scholar 

  • Tobian, A. A., Canaday, D. H., Boom, W. H. and Harding, C. V. (2004a) Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. J Immunol 172, 5277–86.

    CAS  Google Scholar 

  • Tobian, A. A., Canaday, D. H. and Harding, C. V. (2004b) Bacterial heat shock proteins enhance class II MHC antigen processing and presentation of chaperoned peptides to CD4+ T cells. J Immunol 173, 5130–7.

    CAS  Google Scholar 

  • Todryk, S., Melcher, A. A., Hardwick, N., Linardakis, E., Bateman, A., Colombo, M. P., Stoppacciaro, A. and Vile, R. G. (1999) Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J. Immunol. 163, 1398–408.

    PubMed  CAS  Google Scholar 

  • Todryk, S. M., Gough, M. J. and Pockley, A. G. (2003) Facets of heat shock protein 70 show immunotherapeutic potential. Immunology 110, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Tsan, M. F. and Gao, B. (2004) Heat shock protein and innate immunity. Cell Mol Immunol 1, 274–9.

    PubMed  CAS  Google Scholar 

  • Tsukahara, F. and Maru, Y. (2004) Identification of novel nuclear export and nuclear localization-related signals in human heat shock cognate protein 70. J Biol Chem 279, 8867–72.

    Article  PubMed  CAS  Google Scholar 

  • Udono, H. and Srivastava, P. K. (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J. Exp. Med. 178, 1391–6.

    Article  PubMed  CAS  Google Scholar 

  • Udono, H., Yamano, T., Kawabata, Y., Ueda, M. and Yui, K. (2001) Generation of cytotoxic T lymphocytes by MHC class I ligands fused to heat shock cognate protein 70. Int Immunol 13, 1233–42.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, G., Tamura, Y., Hirai, I., Kamiguchi, K., Ichimiya, S., Torigoe, T., Hiratsuka, H., Sunakawa, H. and Sato, N. (2004) Tumor-derived heat shock protein 70-pulsed dendritic cells elicit tumor-specific cytotoxic T lymphocytes (CTLs) and tumor immunity. Cancer Sci 95, 248–53.

    Article  PubMed  CAS  Google Scholar 

  • Vabulas, R. M., Ahmad-Nejad, P., Ghose, S., Kirschning, C. J., Issels, R. D. and Wagner, H. (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 277, 15107–12.

    Article  PubMed  CAS  Google Scholar 

  • van Eden, W., Wendling, U., Paul, L., Prakken, B., van Kooten, P. and van der Zee, R. (2000) Arthritis protective regulatory potential of self-heat shock protein cross-reactive T cells. Cell Stress Chaperones 5, 452–7.

    Article  PubMed  Google Scholar 

  • Waldner, H., Collins, M. and Kuchroo, V. K. (2004) Activation of antigen-presenting cells by microbial products breaks self tolerance and induces autoimmune disease. J Clin Invest 113, 990–7.1

    Article  PubMed  CAS  Google Scholar 

  • Wan, T., Zhou, X., Chen, G., An, H., Chen, T., Zhang, W., Liu, S., Jiang, Y., Yang, F., Wu, Y. and Cao, X. (2004) Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood 103, 1747–54.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R., Kovalchin, J. T., Muhlenkamp, P. and Chandawarkar, R. Y. (2006) Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens. Blood 107, 1636–42.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. Y., Kazim, L., Repasky, E. A. and Subjeck, J. R. (2001a) Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. J. Immunol. 166, 490–497.

    CAS  Google Scholar 

  • Wang, X. Y., Li, Y., Manjili, M. H., Repasky, E. A., Pardoll, D. M. and Subjeck, J. R. (2002a) Hsp110 over-expression increases the immunogenicity of the murine CT26 colon tumor. Cancer Immunol Immunother 51, 311–9.

    Article  CAS  Google Scholar 

  • Wang, Y., Kelly, C. G., Karttunen, J. T., Whittall, T., Lehner, P. J., Duncan, L., MacAry, P., Younson, J. S., Singh, M., Oehlmann, W., Cheng, G., Bergmeier, L. and Lehner, T. (2001b) CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 15, 971–83.

    Article  CAS  Google Scholar 

  • Wang, Y., Kelly, C. G., Singh, M., McGowan, E. G., Carrara, A. S., Bergmeier, L. A. and Lehner, T. (2002b) Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169, 2422–9.

    CAS  Google Scholar 

  • Wang, Y., Whittall, T., McGowan, E., Younson, J., Kelly, C., Bergmeier, L. A., Singh, M. and Lehner, T. (2005) Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells. J Immunol 174, 3306–16.

    PubMed  CAS  Google Scholar 

  • Wendling, U., Paul, L., van der Zee, R., Prakken, B., Singh, M. and van Eden, W. (2000) A conserved mycobacterial heat shock protein (hsp) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing T cells that cross-react with the mammalian self-hsp70 homologue. J Immunol 164, 2711–7.

    PubMed  CAS  Google Scholar 

  • Wu, Y., Wan, T., Zhou, X., Wang, B., Yang, F., Li, N., Chen, G., Dai, S., Liu, S., Zhang, M. and Cao, X. (2005) Hsp70-like protein 1 fusion protein enhances induction of carcinoembryonic antigen-specific CD8+ CTL response by dendritic cell vaccine. Cancer Res 65, 4947–54.

    Article  PubMed  CAS  Google Scholar 

  • Yokota, S., Minota, S. and Fujii, N. (2006) Anti-HSP auto-antibodies enhance HSP-induced pro-inflammatory cytokine production in human monocytic cells via Toll-like receptors. International Immunology 18, 573–80.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, Y., Feng, H., Graner, M. W. and Katsanis, E. (2003) Tumor-derived, chaperone-rich cell lysate activates dendritic cells and elicits potent antitumor immunity. Blood 101, 4485–91.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, Y., Graner, M. W. and Katsanis, E. (2006) Chaperone-rich cell lysates, immune activation and tumor vaccination. Cancer Immunol Immunother 55, 329–38.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, H. and Li, Z. (2004) Cutting edge: cross-presentation of cell-associated antigens to MHC class I molecule is regulated by a major transcription factor for heat shock proteins. J Immunol 173, 5929–33.

    PubMed  CAS  Google Scholar 

  • Zheng, L., He, M., Long, M., Blomgran, R. and Stendahl, O. (2004) Pathogen-induced apoptotic neutrophils express heat shock proteins and elicit activation of human macrophages. J Immunol 173, 6319–26.

    PubMed  CAS  Google Scholar 

  • Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E. and Hendrickson, W. A. (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Millar, D.G., Ohashi, P.S. (2007). Hsp70 Family Members, Danger Signals and Autoimmunity. In: Asea, A.A., Maio, A.D. (eds) Heat Shock Proteins: Potent Mediators of Inflammation and Immunity. Heat Shock Proteins, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5585-0_13

Download citation

Publish with us

Policies and ethics