Skip to main content

Plant Growth And Development Under Salinity Stress

  • Chapter

Abstract

Plant growth and development are adversely affected by salinity – a major environmental stress that limits agricultural production. This chapter provides an overview of the physiological mechanisms by which growth and development of crop plants are affected by salinity. The initial phase of growth reduction is due to an osmotic effect, is similar to the initial response to water stress and shows little genotypic differences. The second, slower effect is the result of salt toxicity in leaves. In the second phase a salt sensitive species or genotype differs from a more salt tolerant one by its inability to prevent salt accumulation in leaves to toxic levels. Most crop plants are salt tolerant at germination but salt sensitive during emergence and vegetative development. Root and shoot growth is inhibited by salinity; however, supplemental Ca partly alleviates the growth inhibition. The Ca effect appears related to the maintenance of plasma membrane selectivity for K over Na. Reproductive development is considered less sensitive to salt stress than vegetative growth, although in wheat salt stress can hasten reproductive growth, inhibit spike development and decrease the yield potential, whereas in the more salt sensitive rice, low yield is primarily associated with reduction in tillers, and by sterile spikelets in some cultivars.

Plants with improved salt tolerance must thrive under saline field conditions with numerous additional stresses. Salinity shows interactions with several stresses, among others with boron toxicity, but the mechanisms of salinity-boron interactions are still poorly known. To better understand crop tolerance under saline field conditions, future research should focus on tolerance of crops to a combination of stresses

Keywords

  • Vegetative growth
  • reproductive growth
  • development
  • salinity stress
  • boron
  • osmotic
  • ionic
  • crop

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullah, Z., M.A. Khan and T.J. Flowers. 2001. Causes of sterility in seed set of rice under salinity stress. J. Agron. Crop Sci. 187:25–32.

    Google Scholar 

  • Abul-Naas, A.A. and M.S. Omran. 1974. Salt tolerance of seventeen cotton cultivars during germination and early seedling development. Acker Pflanzenbau 140:229–236.

    Google Scholar 

  • Ahi, S.M., and W.L. Powers. 1938. Salt tolerance of plants at various temperatures. Plant Physiol. 13:767–789.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ahmad, S., A. Wahid, E. Rasul and A. Wahid. 2005. Comparative morphological and physiological responses of green gram genotypes to salinity applied at different growth stages. Bot. Bull. Acad. Sin. 46:135–142.

    Google Scholar 

  • Akbar, M. and T. Yabuno. 1977. Breeding for saline-resistant varieties of rice. IV. Inheritance of delayed-type panicle sterility induced by salinity. Japan J. Breed. 27: 237–240.

    Google Scholar 

  • Alpaslan, M. and A. Gunes. 2001. Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant Soil 236: 123–128

    CAS  Google Scholar 

  • Ayers, A.D., J.W. Brown and C.H. Wadleigh. 1952. Salt tolerance of barley and wheat in soil plots receiving several salinization regimes. Agron. J. 44:307–310.

    CrossRef  Google Scholar 

  • Badia, D. and A. Meiri. 1994. Tolerance of two tomato cultivars (Lycopersicum esculentum Mill) to soil salinity during emergence phase. Agr. Med 124:301–310

    Google Scholar 

  • Banuelos, G.S., R. Mead, and G.J. Hoffman. 1993. Accumulation of selenium in wild mustard irrigated with agricultural effluent. Agric. Ecosyst. Environ. 43:119–126.

    CAS  Google Scholar 

  • Barrett-Lennard, E.G. 2003. The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant Soil 253:35–54

    CAS  Google Scholar 

  • Baum S.F., Tran P.N. and W.K. Silk. 2000. Effects of salinity on xylem structure and water use in growing leaves of sorghum. New Phytol. 146:119–127.

    Google Scholar 

  • Bayuelo-Jimenez, J.S., R. Craig and J.P. Lynch. 2002. Salinity tolerance of Phaseolus species during germination and early seedling growth. Crop Sci. 42:1584–1594.

    CrossRef  Google Scholar 

  • Ben-Gal, A. and U. Shani. 2002. Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. Plant Soil 247:211–221.

    CAS  Google Scholar 

  • Bernstein, L. and H.E. Hayward. 1958. Physiology of salt tolerance. Ann. Rev. Plant Physiol. 9:25–46.

    CAS  Google Scholar 

  • Bernstein N., Silk W.K. and A. Läuchli. 1993a. Growth and development of sorghum leaves under conditions of NaCl stress. Planta 191:433–439.

    CAS  Google Scholar 

  • Bernstein N. Läuchli A. and W.K. Silk. 1993b. Kinematics and dynamics of sorghum (Sorghum bicolor L.) leaf development at various Na/Ca salinities. Plant Physiol. 103:1107–1114.

    CAS  Google Scholar 

  • Bernstein N., Silk W.K. and A. Läuchli i. 1995. Growth and development of sorghum leaves under conditions of NaCl stress: possible role of some mineral elements in growth inhibition. Planta 196: 699–705.

    CAS  Google Scholar 

  • Bingham, F.T., Strong, J. E., Rhoades, J. D. and Keren, R., 1987. Effects of salinity and varying boron concentrations on boron uptake and growth of wheat. Plant Soil 97: 345–351.

    CAS  Google Scholar 

  • Blevins, D.G. and K.M. Lukaszewski. 1998. Boron in plant structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:501–523

    Google Scholar 

  • Bohnert H.J., Gong Q., Li P. and S. Ma. 2006. Unraveling abiotic stress tolerance mechanisms – getting genomics going. Current Opinion in Plant Biology 9:180–188.

    PubMed  CAS  Google Scholar 

  • Botia, P., J.M. Navarro, A. Cerda and V. Martinez. 2005. Yield and fruit quality of two melon cultivars irrigated with saline water at different stages of development. Eur. J. Agron. 23:243–253

    Google Scholar 

  • Boursier, P. and A. Läuchli. 1990. Growth responses and mineral nutrient relations of salt-stressed sorghum. Crop Sci. 30:1226–1233.

    CrossRef  CAS  Google Scholar 

  • Boyer J.S. 1987. Hydraulics, wall extensibility and wall proteins. In: Physiology of Cell Expansion during Plant Growth, Proc. Second Annual Penn. State Symposium in Plant Physiology. Penn. State University, University Park, PA 16802, pp. 109–121.

    Google Scholar 

  • Brown, P.H., N. Bellaloui, M.A. Wimmer, E.S. Bassil, J. Ruis, H. Hu, H. Pfeffer, F. Dannel, V. Römheld. 2002. Boron in plant biology. Plant boil. 4:211–229.

    Google Scholar 

  • Brown, P.H and B.J. Shelp. 1997. Boron mobility in plants. Plant Soil:193:85–101

    CAS  Google Scholar 

  • Carter, C.T., C.M. Grieve and J.P. Poss. 2005. Salinity effects on emergence, survival, and ion accumulation of Limonium perezii. J. Plant Nutr. 28:1243–1257.

    CAS  Google Scholar 

  • Cosgrove D.J. 1987. Linkage of wall extension with water and solute uptake. In: Physiology of Cell Expansion during Plant Growth, Proc. Second Annual Penn. State Symposium in Plant Physiology., Penn. State University, University Park PA 16802, pp. 88–100.

    Google Scholar 

  • Cramer G.R. 1991. Kinetics of maize leaf elongation. II. Responses of a sodium excluding cultivar and a Na including cultivar to varying Na/Ca salinity. J. Exp. Bot. 43:857–864.

    Google Scholar 

  • Cramer, G.R. 2002. Sodium-calcium interactions under salinity stress. In: Salinity. Environment-Plants-Molecules.. A. Läuchli and U. Lüttge (Eds) . Kluwer Academic Publishers, Dordrecht, pp. 205–227

    Google Scholar 

  • Cramer G.R. 2003. Differential effects of salinity on leaf elongation kinetics of three grass species. Plant Soil 253:233–244.

    CAS  Google Scholar 

  • Cramer G.R. and D.C. Bowman. 1991. Kinetics of maize leaf elongation. I. Increased yield threshold limits short-term elongation rates after exposure to salinity. J. Exp. Bot. 42:1417–1426.

    Google Scholar 

  • Cramer G.R. and D.C. Bowman. 1993. Cell elongation control under stress conditions. In: Handbook of Plant and Crop Stress, M Pessarakli (Ed.). Marcel Dekker, New York, pp. 303–319.

    Google Scholar 

  • Cramer G.R., Epstein E. and A. Läuchli. 1988. Kinetics of root elongation of maize in response to short-term exposure to NaCl and elevated calcium concentration. J. Exp. Bot. 39:1513–1522.

    CAS  Google Scholar 

  • Cramer G.R. and A. Läuchli. 1986. Ion activities in solution in relation to Na+- Ca 2+ interactions at the plasmalemma. J. Exp. Bot. 37:321–330.

    CAS  Google Scholar 

  • Cramer G.R., Läuchli A. and E. Epstein. 1986. Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root growth of cotton. Plant Physiol. 81:792–797.

    PubMed  CAS  Google Scholar 

  • Cramer G.R., Läuchli A and V.S. Polito. 1985. Displacement of Ca2+from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol. 79:297–211.

    Google Scholar 

  • Cramer G.R., Schmidt C.L. and C. Bidart. 2001. Analysis of cell wall hardening and cell wall enzymes of salt-stressed maize (Zea mays) leaves. Aust. J. Plant Physiol. 28:101–109.

    CAS  Google Scholar 

  • Cuartero J. and R. Fernandez-Munoz. 1999. Tomato and salinity. Scientia Horticulturae 78:83–125.

    CAS  Google Scholar 

  • Cuartero J., Bolarin M.C., Asins M.J. and V. Moreno. 2006. Increasing salt tolerance in the tomato. J. Exp. Bot. 57:1045–1058.

    PubMed  CAS  Google Scholar 

  • Curtain, D., H. Steppuhn and F. Selles. 1993. Plant responses to sulfate and chloride salinity: Growth and ionic relations. Soil Sci. Soc. J. 57:1304–1310.

    CrossRef  Google Scholar 

  • del Amor, F.M., V. Martinez and A. Cerda. 2001. Salt tolerance of tomato plants as affected by stage of plant development. Hort. Sci 36:1260–1263.

    CAS  Google Scholar 

  • Drew, M.C., J. Guenther, and A. Läuchli. 1988. The combined effects of salinity and root anoxia on growth and net Na+ and K+ accumulation in Zea mays grown in solution culture. Ann. Bot. 61:41–43

    CAS  Google Scholar 

  • Eaton, F.M. 1944. Deficiency, toxicity, and accumulation of boron in plants. J. Agric. Res. 69:237–277.

    CAS  Google Scholar 

  • El-Hendawy, S.E., Y. Hu, G.M. Yakout, A.M. Awad. S.E. Hafiz, and U. Schmidhalter. 2005. Evaluating salt tolerance of wheat genotypes using multiple parameters. Europ. J. Agron. 22:243–253

    CAS  Google Scholar 

  • El-Motaium, R., Hu, H. and Brown, P. H., 1994. The relative tolerance of six Prunus rootstocks to boron and salinity. J. Amer. Soc. Hort. Sci 119: 1169–1175. UC Salinity-Drainage Task Force Annual report. Div. Agric. And Nat. Resources. University of California

    Google Scholar 

  • Epstein E. 1961. The essential role of calcium in selective cation transport by plant cells. Plant Physiol. 36:437–444.

    PubMed  CAS  Google Scholar 

  • Esechie, H.A., A. Al-Saidi and S. Al-Khanjari. 2002. Effect of sodium chloride salinity on seedling emergence in chickpea. J. Agron. and Crop. Sci. 188:155–160

    Google Scholar 

  • Ferreyra, R.E., A.U. Alijaro, R.S. Ruiz, L.P. Rojas and J.D. Oster. 1997. Behavior of 42 crop species grown in saline soils with high boron concentrations. Agric. Water Manag 32:111–124.

    Google Scholar 

  • Flowers T. 2006. Preface. J. Exp. Bot. 57, p. iv.

    Google Scholar 

  • Flowers T.J., Hajibagheri M.A. and A.R. Yeo. 1991. Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ. 14:319–325.

    Google Scholar 

  • Flowers, T.J., and A.R. Yeo. 1981. Variability in the resistance of sodium chloride within rice (Oryza sativa L.) varieties. New Phytol. 88:363–373.

    CAS  Google Scholar 

  • Fricke W. 2004. Rapid and tissue-specific accumulation of solutes in the growth zone of barley leaves in response to salinity. Planta 219:515–525.

    PubMed  CAS  Google Scholar 

  • Fricke W., Akhiyarova G., Wei W., Alexandersson E., Miller A., Kjellbom P.O., Richardson A., Wojciechowski T., Schreiber L., Veselov D., Kudoyarova G. and V. Volkov. 2006. The short-term growth response to salt of the developing barley leaf. J. Exp. Bot. 57:1079–1095.

    PubMed  CAS  Google Scholar 

  • Fricke W. and W.S. Peters. 2002. The biophysics of leaf growth in salt-stressed barley: a study at the cell level. Plant Physiol. 129:374–388.

    PubMed  CAS  Google Scholar 

  • Geraldson, C.M. 1957. Factors affecting calcium nutrition of celery, tomato, and pepper. Soil Sci. Soc. Am. Proc. 21:621–625.

    CrossRef  CAS  Google Scholar 

  • Gibbs, R.J. 1970. Mechanisms controlling world water chemistry. Science 170:1088–1090.

    PubMed  CAS  Google Scholar 

  • Goyal S.S., Sharma S.K., Rains D.W. and A. Läuchli. 1999. Long-term reuse of drainage waters of varying salinities for crop irrigation in a cotton-safflower rotation system in the San Joaquin Valley of California – a nine year study. I. Cotton (Gossypium hirsutum L.). J. Crop Prod. 2, No. 2: 181–213.

    Google Scholar 

  • Grattan, S.R. and C.M. Grieve. 1999. Salinity - Mineral nutrient relations in horticultural crops. Sci. Hort. 78:127–157.

    CAS  Google Scholar 

  • Grattan, S.R., C.M. Grieve, J.P Poss, D. Suarez and A. Läuchli. 2005. Continued investigation into the interactions of saline drainage water on crop tolerance to boron. 2004–05 Technical Progress Report: UC Salinity/Drainage Research Program. DANR. University of California.

    Google Scholar 

  • Grattan, S.R., C.M. Grieve, J.P Poss, D. Suarez, A. Läuchli and T. Smith. 2006. Continued investigation into the interactions of saline drainage water on crop tolerance to boron. 2005–06 Technical Progress Report: UC Salinity/Drainage Research Program. DANR. University of California.

    Google Scholar 

  • Grattan, S.R., C. Grieve, J. Poss, D. Suarez and T. Smith. 2004. Does saline drainage water affect crop tolerance to boron?. 2003–04 Technical Progress Report: UC Salinity/Drainage Research Program. DANR. University of California. pp 19–32.

    Google Scholar 

  • Grattan, S.R. and J.D. Oster. 2003. Use and reuse of saline-sodic waters for irrigation of crops. In: S.S. Goyal, S.K. Sharma and D.W. Rains (eds.), Crop Production in Saline Environments: Global and Integrative Perspectives. Haworth Press, New York. pp 131–162

    Google Scholar 

  • Grattan, S.R., Shannon, M. C., Grieve, C. M., Poss, J. A., Suarez, D. L. and Francois, L. E. 1996. Interactive effects of salinity and boron on the performance and water use of eucalyptus. Acta Hort. 449:607–613

    Google Scholar 

  • Grattan, S.R., L. Zeng, M.C. Shannon and S.R. Roberts, 2002. Rice is more sensitive to salinity than previously thought. Calif. Agric. 56:189–195.

    Google Scholar 

  • Grieve, C.M. and J.P. Poss. 2000. Wheat response to interactive effects of boron and salinity. J. Plant Nutr. 23: 1217–1226.

    CAS  Google Scholar 

  • Grieve, C.M, L.E. Francois and J.A. Poss. 2001. Salt stress during early seedling growth on phenology and yield of spring wheat. Cereal Res. Comm. ?? 167–174

    Google Scholar 

  • Grieve, C.M., S.M. Lesch, L.E. Francois and E.V. Maas. 1992, Analysis of main-spike yield components in salt-stressed wheat. Crop Sci. 32:697–703

    CrossRef  CAS  Google Scholar 

  • Grieve, C.M., S.M. Lesch, E.V. Maas, and L.E. Francois. 1993. Leaf and spikelet primordia initiation in salt-stressed wheat. Crop Sci. 22:1286–1294.

    CrossRef  Google Scholar 

  • Grieve C.M., and E.V. Maas. 1988. Differential effects of sodium/calcium ratio on sorghum genotypes. Crop. Sci. 29:659–665.

    CrossRef  Google Scholar 

  • Gupta, U.C., Jame, Y. W., Campbell, C. A., Leyshon, A. J. and Nicholaichuk, W., 1985. Boron toxicity and deficiency: A review. Can. J. Soil Sci. 65: 381–409.

    CrossRef  CAS  Google Scholar 

  • Halperin S.J., Kochian L.V. and J. P. Lynch. 1997. Salinity stress inhibits calcium loading into the xylem of excised barley (Hordeum vulgare) roots. New. Phytol. 135:419–427.

    CAS  Google Scholar 

  • Hasegawa P.M., Bressan R.A., Zhu J.-K. and H.J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:463–499.

    PubMed  CAS  Google Scholar 

  • Heenan, D.P., L.G. Lewin and D.W. McCaffery. 1988. Salinity tolerance in rice varieties at different growth stages. Aust. J. Exp. Agric. 28:343–349.

    Google Scholar 

  • Hillel D. 2000. Salinity Management for Sustainable Irrigation. The World Bank, Washington, D.C.

    Google Scholar 

  • Hirrel, M.C. and J.W. Gerdemann. 1980. Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Soil Sci. Soc. Amer. J. 44:654–655.

    CrossRef  CAS  Google Scholar 

  • Hoffman, G.J., and S.L. Rawlins. 1970. Design and performance of sunlit climate chambers. Trans. ASAE. 13:656–660.

    Google Scholar 

  • Hoffman, G.J., and S.L. Rawlins. 1971. Growth and water potential of root crops as influenced by salinity and relative humidity. Agron. J. 63:877–880.

    CrossRef  Google Scholar 

  • Hoffman, G.J., S.L. Rawlins, M.J. Garber, and E.M. Cullen. 1971. Water relations and growth of cotton as influenced by salinity and relative humidity. Agron. J. 63:822–826.

    CrossRef  Google Scholar 

  • Holloway, R.E., and A.M. Alston. 1992. The effects of salt and boron on growth of wheat. Aust. J. Agric. Res., 43:987–1001.

    CAS  Google Scholar 

  • Homaee, M., R.A. Feddes and C. Dirksen. 2002. A macroscopic water extraction model for nonuniform transient salinity and water stress. Soil Sci. Soc. Am. J. 66:1764–1772

    CrossRef  CAS  Google Scholar 

  • Hsiao T.C., Acevedo E., Fereres E. and D.E. Henderson. 1976. Stress metabolism. Water stress, growth, and osmotic adjustment. Phil. Trans. R. Soc. Lond. (B), 273:470–500.

    CrossRef  Google Scholar 

  • Hu, Y., J. Fromm and U. Schmidhalter. 2005a. Effect of salinity on tissue architecture in expanding wheat leaves. Planta 220:838–848.

    CAS  Google Scholar 

  • Hu Y., Fricke W. and U. Schmidhalter. 2005b. Salinity and the growth of non-halophytic grass leaves: the role of mineral nutrient distribution. Funct. Plant Biol. 32:973–985.

    CAS  Google Scholar 

  • Hu Y. and U. Schmidhalter. 2004. Limitation of salt stress to plant growth. In: Plant Toxicology (Hock, B.and E.F. Elstner (eds) Marcel Dekker, New York pp 191–224

    Google Scholar 

  • James J.J., Alder N.N., Mühling K.H., Läuchli A.E., Shackel K.A., Donovan L.A. and J.H. Richards. 2006. High apoplastic solute concentrations in leaves alter water relations of the halophytic shrub, Sarcobatus vermiculatus. J. Exp. Bot. 57:139–147.

    PubMed  CAS  Google Scholar 

  • Katerji, N., J.W. van Horn, A. Hamdy, F. Karam and M. Mastrorilli. 1994. Effect of salinity on emergence and on water stress and early seedling growth of sunflower and maize. Agric. Water Mang. 26:81–91.

    Google Scholar 

  • Kent, L.M. and A. Läuchli. 1985. Germination and seedling growth of cotton: salinity-calcium interactions. Plant Cell Envrion. 8:155–159

    CAS  Google Scholar 

  • Kearney, T.H and L.L. Harter. 1907. The comparative tolerance of various plants for the salts common in alkali soils. U.S.D.A Plant industry bulletin 113:7–22

    Google Scholar 

  • Khan, M.A. and Z. Abdullah. 2003. Reproductive physiology of two wheat cultivars differing in salinity tolerance under dense saline-sodic soil. Food, Agric. And Envrion. 1:185–189

    Google Scholar 

  • Khatun, S., and T.J. Flowers. 1995. Effects of salinity on seed set in rice. Plant Cell Environ. 18:61–67.

    Google Scholar 

  • Khatun, S., C.A. Rizzo and T.J. Flowers. 1995. Genotypic variation in the effect of salinity on fertility in rice. Plant Soil 173:239–250

    CAS  Google Scholar 

  • Kinraide T.B. 1999. Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects. J. Exp. Bot. 50:1495–1505.

    CAS  Google Scholar 

  • Koiwa H., Bressan R.A. and P.M. Hasegawa. 2006. Identification of plant stress-responsive determinants in arabidopsis by large-scale forward genetic screens. J. Exp. Bot. 57:1119–1128.

    PubMed  CAS  Google Scholar 

  • Kopittke, P.M. and N.W. Menzies. 2004. Effect of pH on Na induced calcium deficiency. Plant Soil 269:119–129

    Google Scholar 

  • Kozlowski, T.T. 1997. Responses of woody plants to flooding and salinity. Tree Physiol. Monograph 1

    Google Scholar 

  • Kurth E., Cramer G.R., Läuchli A. and E. Epstein. 1986. Effects of NaCl and CaCl2 on cell enlargement and cell production in cotton roots. Plant Physiol. 82:1102–1106.

    PubMed  CAS  Google Scholar 

  • LaHaye, P.A. and E. Epstein. 1969. Salt toleration by plants: Enhancement with calcium. Science 166:395–396.

    PubMed  CAS  Google Scholar 

  • LaHaye P.A. and E. Epstein. 1971. Calcium and salt toleration by bean plants. Physiol. Plant. 25: 213–218.

    CAS  Google Scholar 

  • Läuchli, A. 1984. Salt exclusion: An adaptation of legumes for crops and pastures under saline conditions. p.171–187.In R.C. Staples and G.H. Toenniessen (eds.) Salinity Tolerance in Plants. Strategies for Crop Improvement. John Wiley & Sons. New York.

    Google Scholar 

  • Läuchli A. 1990. Calcium, salinity and the plasma membrane. In: Calcium in Plant Growth and Development, R.T. Leonard and P.K. Hepler (Eds.). The American Society of Plant Physiologists Symposium Series, Vol. 4, pp. 26–35.

    Google Scholar 

  • Läuchli A. 1999. Salinity-potassium interactions in crop plants. In: Frontiers in Potassium Nutrition, D.M. Oosterhuis and G.A. Berkovitz (Eds.). Potash and Phosphate Institute, Norcross, Georgia, pp. 71–76.

    Google Scholar 

  • Läuchli, A. 2002. Functions of boron in higher plants: Recent advances and open questions. Plant biol. 4:190–192.

    Google Scholar 

  • Läuchli A. and E. Epstein. 1970. Transport of potassium and rubidium in plant roots. The significance of calcium. Plant Physiol. 45:639–641.

    Google Scholar 

  • Läuchli, A. and E. Epstein. 1990. Plant responses to saline and sodic conditions. In K.K. Tanji (ed). Agricultural salinity assessment and management. ASCE manuals and reports on engineering practice No, 71. pp 113–137 ASCE New York

    Google Scholar 

  • Lazof, D.B. and N. Bernstein. 1999. The NaCl induced inhibition of shoot growth: The case for disturbed nutrition with special consideration of calcium. Advances in Botanical Research 29:113–189.

    CrossRef  CAS  Google Scholar 

  • Lazof, D.B. and A. Läuchli. 1991. The nutritional status of the apical meristem of Lactuca sativa as affected by NaCl salinization: an electron-probe microanalytic study. Planta 184:334–342

    CAS  Google Scholar 

  • Lee, Y.S., S.R. Park, H.J. Park and Y.W. Kwon. 2004. Salt stress magnitude can be quantified by integrating salinity with respect to duration. Proceedings of 4th International Crop Sci Congress. Brisbane, Aust. 26 Sept- 1 Oct 2004 pp 1–5

    Google Scholar 

  • Lutts, S., J.M. Kinet and J. Bouharmont. 1995. Changes in plant response to NaCl during development of rice (Oryza sative L.) varieties differing in salinity resistance. J. Exp Bot 46:1843–1852.

    CAS  Google Scholar 

  • Lynch J. and A. Läuchli. 1985. Salt stress disturbs the calcium nutrition of barley (Hordeum vulgare L.). New Phytol. 99:345–354.

    CAS  Google Scholar 

  • Lynch J., Thiel G. and A. Läuchli. 1988. Effects of salinity on the extensibility and Ca availability in the expanding region of growing barley leaves. Bot. Acta 101:355–361.

    CAS  Google Scholar 

  • Maas E.V. and C.M. Grieve. 1987. Sodium-induced calcium deficiency in salt-stressed corn. Plant Cell Environ. 10:559–564.

    Google Scholar 

  • Maas, E.V. and C.M. Grieve. 1990. Spike and leaf development in salt-stressed wheat. Crop Sci. 30:1309–1313.

    CrossRef  Google Scholar 

  • Maas, E.V., G.J. Hoffman, G.D. Chaba, J.A. Poss and M.C. Shannon. 1983. Salt sensitivity of corn at various growth stages. Irrig. Sci. 4:45–57.

    Google Scholar 

  • Maas, E.V. and J.A. Poss. 1989a. Salt sensitivity of wheat at different growth stages. Irrig. Sci. 10:29–40.

    Google Scholar 

  • Maas, E.V. and J.A. Poss. 1989b. Salt sensitivity of cowpea at various growth stages. Irrig. Sci. 10: 313–320.

    Google Scholar 

  • Maas, E.V., Poss, J.A., Hoffman, G.J. 1986. Salinity sensitivity of sorghum at three growth stages. Irrig. Sci. 7:1–11

    Google Scholar 

  • Maas, E. V. and S. R. Grattan. 1999. Crop yields as affected by salinity. In R. W. Skaggs and J. van Schilfgaarde (eds) Agricultural Drainage. Agron. Monograph 38. ASA, CSSA, SSA, Madison, WI pp. 55–108.

    Google Scholar 

  • MacDonald, J.D. 1982. Effect of salinity stress on development of Phytophthora root rot of chrysanthemum. Phytopath. 72:214–219.

    Google Scholar 

  • Magistad, O.C., A.D. Ayers, C.H. Wadleigh, and H.F. Gauch. 1943. Effect of salt concentration, kind of salt, and climate on plant growth in sand cultures. Plant Physiol. 18:151–166.

    PubMed  CAS  Google Scholar 

  • Marschner, H. 1995. Mineral Nutrition of Higher Plants. Second edition. Academic Press, London, pp. 388–390

    Google Scholar 

  • Martinez-Beltran J. and C.L. Manzur. 2005. Overview of salinity problems in the world and FAO strategies to address the problem. In: Proceedings of the International Salinity Forum, Riverside, California, April 2005, pp. 311–313.

    Google Scholar 

  • Mauromicale, G. and P. Licandro. 2002. Salinity and temperature effects on germination, emergence and seedling growth of globe artichoke. Agronomie 22:443–450.

    Google Scholar 

  • Meiri, A. 1984. Plant response to salinity: Experimental methodology and application to the field. p. 284–297. I. Shainberg and J. Shalhevet (eds.) Soil Salinity Under Irrigation. Springer Verlag, New York.

    Google Scholar 

  • Mikkelsen, R.L., B.H. Haghnia, A.L. Page and F.T. Bingham. 1988. The influence of selenium, salinity and boron on alfalfa tissue composition and yield. J. Environ. Qual:17:85–88

    CrossRef  CAS  Google Scholar 

  • Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Sci 11:15–19

    CAS  Google Scholar 

  • Miyamoto, S., K. Piela, and J. Patticrew. 1985 Salt effects on germination and seedling emergence of several vegetable crops and guayule. Irrig. Sci. 6:159–170.

    CAS  Google Scholar 

  • Mühling K.H. and A. Läuchli. 2002a. Effect of salt stress on growth and cation compartmentation in leaves of two plant species differing in salt tolerance. J. Plant Physiol. 159:137–146.

    Google Scholar 

  • Mühling K.H. and A. Läuchli. 2002b. Determination of apoplastic Na+ in intact leaves of cotton by in vivo fluorescence ratio-imaging. Funct. Plant Biol. 29:1491–1499.

    Google Scholar 

  • Munns, R. 2002a. Comparative physiology of salt and water stress. Plant Cell Environ. 25:239–250.

    CAS  Google Scholar 

  • Munns R. 2002b. Salinity, growth and phytohormones. In: Salinity: Environment – Plants – Molecules, A. Läuchli and U. Lüttge (Eds.). Kluwer Academic Publishers, Dordrecht, pp. 271–290.

    Google Scholar 

  • Munns R. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167:645–663.

    PubMed  CAS  Google Scholar 

  • Munns R., James R.A. and A. Läuchli. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57:1025–1043.

    PubMed  CAS  Google Scholar 

  • Munns R. and A. Termaat. 1986. Whole plant responses to salinity. Aust. J. Plant Physiol. 13:143–160.

    Google Scholar 

  • Munns, R., S. Husain, A.R. Rivelli, R.A. James, A.G. Condon, M.P. Lindsay, E.S. Lagudah, D.P Schachtman and R.A. Hare. 2002. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247:93–105.

    CAS  Google Scholar 

  • Munns, R. and H.M. Rawson. 1999. Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Aust. J. Plant Physiol. 26:459–464

    CrossRef  Google Scholar 

  • Nable, R.O., G.S. Bañuelos and J.G. Paull. 1997. Boron toxicity. Plant Soil, 193:181–198.

    CAS  Google Scholar 

  • Navarro, J.M., C. Garrido, M. Carvajal and V. Martinez. 2002. Yield and fruit quality of pepper plants under sulfate and chloride salinity. J. Hort. Sci. and Biotech 77:52–57.

    Google Scholar 

  • Nerson, H. and H.S. Paris. 1984. Effects of salinity on germination, seedling growth, and yield of melons. Irrig. Sci. 5:265–273

    Google Scholar 

  • Neumann P.M. 1993. Rapid and reversible modifications of extension capacity of cell walls in elongating maize leaf tissues responding to root addition and removal of NaCl. Plant Cell Environ. 16:1107–1114,

    CAS  Google Scholar 

  • Neves-Piestun B.G. and N. Bernstein. 2001. Salinity-induced inhibition of leaf elongation in maize is not mediated by changes in cell wall acidification capacity. Plant Physiol. 125:1419–1428.

    PubMed  CAS  Google Scholar 

  • Neves-Piestun B.G. and N. Bernstein. 2005. Salinity-induced changes in the nutritional status of expanding cells may impact leaf growth inhibition in maize. Funct. Plant Biol. 93:1610–1619.

    Google Scholar 

  • Nieman, R.H., and L.L. Poulsen. 1967. Interactive effects of salinity and atmospheric humidity on the growth of bean and cotton plants. Bot. Gaz. 128:69–73.

    Google Scholar 

  • Nonami H. and J.S. Boyer. 1990. Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues at low water potentials. Plant Physiol. 93:1610–1619.

    PubMed  CAS  Google Scholar 

  • Oertli J.J. 1968. Extracellular salt accumulation, a possible mechanism of salt injury in plants. Agrochimica 12:461–469.

    Google Scholar 

  • Ojala, J.C., W.M. Jarrell, J.A. Menge, and E.L.V. Johnson. 1983. Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agron J. 75:255–259.

    CrossRef  CAS  Google Scholar 

  • Papp J.C., Ball M.C. and N. Terry. 1983. A comparative study of the effects of NaCl salinity on respiration, photosynthesis and leaf extension growth in Beta vulgaris (sugar beet). Plant Cell Environ 6:675–677.

    Google Scholar 

  • Pasternak, D.M., M. Twersky and Y. de Malach. 1979. Salt resistance in agricultural crops. In: Stress physiology in crop plants (eds H. Mussell and R.C. Staples). p 127–142. Wiley, New York

    Google Scholar 

  • Pearson, G.A. and A.D. Ayers. 1966. Relative salt tolerance of rice during germination and early seedling development. Soil Sci. 102:151–156.

    CAS  Google Scholar 

  • Pearson, G.A. and L. Bernstein, 1959. Salinity effects at several growth stages of rice. Agron. J. 51:654:657.

    CrossRef  Google Scholar 

  • Pitman MG. and A. Läuchli. 2002. Global impact of salinity and agricultural ecosystems. In: Salinity: Environment – Plants – Molecules, A. Läuchli and U. Lüttge (Eds.). Kluwer Academic Publishers, Dordrecht, pp. 3–20.

    Google Scholar 

  • Poss, J.A., S.R. Grattan, and C. M. Grieve and M.C. Shannon. 1998. Characterization of leaf boron injury in salt-stressed Eucalyptus by Image Analysis. Plant Soil: 206: 237–245.

    CAS  Google Scholar 

  • Poss, J.A., E. Pond, J.A. Menge, and W. M. Jarrell. 1985. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil 88:307–319

    CAS  Google Scholar 

  • Poss, J.A., W.B Russell, P.J. Shouse, R.S. Austin, S.R. Grattan, C.M. Grieve, J.H. Lieth and L. Zeng. 2004. A volumetric lysimeter system (VLS): an alternative to weighing lysimeters for plant-water relations studies. Comp. Electronics Agric. 43:55–68.

    Google Scholar 

  • Rogers, M.E., C.M. Grieve and M.C. Shannon. 1998. The response of lucerne (Medicago sativa L. to sodium sulfate and chloride salinity. Plant Soil 202:271–280.

    CAS  Google Scholar 

  • Rengasamy P. 2006. World salinization with emphasis on Australia. J. Exp. Bot 57:1017–1023.

    PubMed  CAS  Google Scholar 

  • Rengel, Z. 1992. The role of calcium in salt toxicity. Plant Cell Environ. 15:625–632

    CAS  Google Scholar 

  • Shalhevet, J. and T.C. Hsiao. 1986. Salinity and drought. Irrig. Sci. 7:249–264

    CAS  Google Scholar 

  • Shani, U. and L.M. Dudley. 2001. Field studies of crop response to water and salt stress. Soil Sci. Soc. Am. J. 65:1522–1528

    CrossRef  CAS  Google Scholar 

  • Shani, U. and R.J. Hanks. 1993. Model of integrated effects on boron, inert salt, and water flow on crop yield. Agron. J. 85:713–717.

    CrossRef  Google Scholar 

  • Sharpley, A.N., J.J. Meisinger, J.F. Power, and D.L. Suarez. 1992. Root extraction of nutrients associated with long-term soil management. J.L. Hatfield and B.A. Steward (eds.) Advances in Soil Science. Vol. 19. Springer-Verlag, New York.

    Google Scholar 

  • Snapp, S.S., C. Shennan, and A.H.C. van Bruggen. 1991. Effects of salinity on severity of infection by Phytophthora parasitica Dast., ion concentrations and growth of tomato, Lycopersicon esculentum Mill. New Phytol. 119:275–284.

    CAS  Google Scholar 

  • Tajbakhsh, M., M.X. Zhou, Z.H. Chen and N.J. Mendham. 2006. Physiological and cytological response of salt-tolerant and non-tolerant barley to salinity during germination and early growth. Aust. J. Exp. Agric. 46:555–562.

    Google Scholar 

  • Tanji, K.K. 1990. (ed). Agricultural salinity assessment and management. ASCE manuals and reports on engineering practice No. 71. Am. Soc. Civil Eng., New York

    Google Scholar 

  • Tester M. and R. Davenport. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91:503–527.

    PubMed  CAS  Google Scholar 

  • Thiel G.H., Lynch J. and A. Läuchli. 1988. Short-term effects of salinity stress on the turgor and elongation of growing barley leaves. J. Plant Physiol. 132:38–44.

    CAS  Google Scholar 

  • Tsadilas, C.D. 1997. Soil contamination with boron due to irrigation with treated municipal waste water. In Boron in Soils and Plants. R.W. Bell and B. Rerkasem (eds) Kluwer Academic Publishers, Dordrecht pp 265–270.

    Google Scholar 

  • Van Volkenburgh E. and J.S. Boyer. 1985. Inhibitory effect of water deficit on maize leaf elongation. Plant Physiol. 77:190–194.

    PubMed  Google Scholar 

  • Vinizky, I and D.T. Ray. 1988. Germination of guar seed under salt and temperature stress. J. Am. Soc. Hort. Sci. 113:437–440.

    Google Scholar 

  • Wadleigh, C.H. and A.D. Ayers. 1945. Growth and biochemical composition of bean plants as conditioned by soil moisture tension and salt concentration. Plant Physiol. 20: 106–132.

    PubMed  CAS  Google Scholar 

  • Wilson, C., S.M. Lesch and C.M. Grieve. 2000. Growth stage modulates salinity tolerance of New Zealand spinach (Tetragonia tetragonioides, Pall) and Red Orach (Atriplex hortensis L.) Annals Bot. 85:501–509.

    CAS  Google Scholar 

  • Wimmer, M.A., K.H. Mühling, A. Läuchli, P.H. Brown and H.E. Goldbach. 2001. Interaction of salinity and boron toxicity in wheat (Triticum asetivum L.) In Plant nutrition - Food security and sustainability of agro-ecosystems. Kluwer Academic Publishers pp 426–427

    Google Scholar 

  • Wimmer, M.A., K. H. Mühling, A. Läuchli, P.H. Brown and H.E. Goldbach. 2003. The interaction between salinity and boron toxicity affect subcellular distribution of in and proteins in wheat leaves. Plant Cell Envrion. 26:1267–1274

    CAS  Google Scholar 

  • Wimmer M.A. Bassil E.S., Brown P.H. and A. Läuchli. 2005. Boron response in wheat is genotype-dependent and related to boron uptake, translocation, allocation, plant phenological development and growth rate. Funct. Plant Biol. 32:507–515.

    CAS  Google Scholar 

  • Yadav, H. D., O. P.Yadav, O. P. Dhankar, and M. C. Oswal. 1989. Effect of chloride salinity and boron on germination, growth, and mineral composition of chickpea (Cicer arietinum L.) Ann. Arid Zone 28:63–67.

    Google Scholar 

  • Yamaguchi T. and E. Blumwald. 2005. Developing salt-tolerant crop plants: challenges and opportunities. Trends in Plant Science 10:615–620.

    PubMed  CAS  Google Scholar 

  • Yeo A.R., Lee K.S., Izard P., Boursier P. and T.J. Flowers. 1991. Short- and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). J. Exp. Bot. 42:881–889.

    CAS  Google Scholar 

  • Yermiyahu U., Nir S., Ben-Hayyim G., Kafkafi U. and T.B. Kinraide. 1997. Root elongation in saline solution related to calcium binding to root cell plasma membranes. Plant Soil 191:67–76.

    CAS  Google Scholar 

  • Zeng, L. and M.C. Shannon. 2000. Salinity effects on seedling growth and yield components of rice. Crop Sci. 40:996–1003

    CrossRef  Google Scholar 

  • Zhong H. and A. Läuchli. 1993. Spatial and temporal aspects of growth in the primary root of cotton seedlings: effects of NaCl and CaCl2. J. Exp. Bot. 44:763–771.

    CAS  Google Scholar 

  • Zhong H. and A. Läuchli. 1994. Spatial distribution of solutes, K, Na, and Ca and their deposition rates in the growth zone of primary cotton roots: effects of NaCl and CaCl2. Planta 194:34–41.

    CAS  Google Scholar 

  • Zhu J.-K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247–273.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Läuchli, A., Grattan, S. (2007). Plant Growth And Development Under Salinity Stress. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_1

Download citation