Skip to main content

Abstract

In the last decade, the sequencing of several plant genomes has greatly amplified the number of genes being evaluated for their ability to confer stress tolerance. Over 50 genes have been reported to confer drought tolerance when overexpressed and the number of field trials for transgenic drought tolerant crops is on the rise. Nevertheless, no transgenic drought tolerant crop has yet been commercialized. In this chapter, we examine the approaches being taken by academic labs and the agricultural biotechnology industry to identify and evaluate candidate genes. We address criteria used for selecting candidate genes, developing high-throughput phenotyping platforms and applying drought stress in the lab. In addition, we highlight promising genes that are at more advanced stages of evaluation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abebe, T., Guenzi, A.C., Martin, B., and Cushman, J.C. (2003). Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131, 1748–1755.

    Article  PubMed  CAS  Google Scholar 

  • Aharon, R., Shahak, Y., Wininger, S., Bendov, R., Kapulnik, Y., and Galili, G. (2003). Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15, 439–447.

    Article  PubMed  CAS  Google Scholar 

  • Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., van Arkel, G., and Pereira, A. (2004). The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16, 2463–2480.

    Article  PubMed  CAS  Google Scholar 

  • Alexandersson, E., Fraysse, L., Sjovall-Larsen, S., Gustavsson, S., Fellert, M., Karlsson, M., Johanson, U., and Kjellbom, P. (2005). Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59, 469–484.

    Article  PubMed  CAS  Google Scholar 

  • Alexandrov, N.N., Troukhan, M.E., Brover, V.V., Tatarinova, T., Flavell, R.B., and Feldmann, K.A. (2006). Features of Arabidopsis genes and genome discovered using full-length cDNAs. Plant Mol Biol 60, 69–85.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657.

    Article  PubMed  Google Scholar 

  • Araus, J.L., Slafer, G.A., Reynolds, M.P., and Royo, C. (2002). Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot (Lond) 89 Spec No, 925–940.

    Google Scholar 

  • Bacon, M.A. (2004). Water use efficiency in plant biology. In Water use efficiency in plant biology, M.A. Bacon, ed (Boca Raton: CRC Press LLC), pp. 1–22.

    Google Scholar 

  • Bouche, N., and Bouchez, D. (2001). Arabidopsis gene knockout: phenotypes wanted. Curr Opin Plant Biol 4, 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, J.S. (1992). Mechanisms for obtaining water use efficiency and drought resistance. In Plant breeding in the 1990s, H.T. Stalker and J.P. Murphy, eds (Wallingford, UK: CAB International), pp. 181–200.

    Google Scholar 

  • Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davis, K.R., and Gorlach, J. (2001). Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499–1510.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, W.B., Edmeades, G.O., and Barker, T.C. (2002). Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53, 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Chandra Babu, R., Zhang, J., Blum, A., David Ho, T.-H., Wu, R., and Nguyen, H.T. (2004). HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166, 855–862.

    Article  CAS  Google Scholar 

  • Chaves, M.M., and Oliveira, M.M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55, 2365–2384.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Goodwin, S.M., Boroff, V.L., Liu, X., and Jenks, M.A. (2003). Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15, 1170–1185.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, J.H., Hoekstra, F.A., and Crowe, L.M. (1992). Anhydrobiosis. Annu Rev Physiol 54, 579–599.

    Article  PubMed  CAS  Google Scholar 

  • Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S., and McCourt, P. (1996). A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273, 1239–1241.

    Article  PubMed  CAS  Google Scholar 

  • Dejardin, A., Sokolov, L.N., and Kleczkowski, L.A. (1999). Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem J 344 Pt 2, 503–509.

    Article  PubMed  CAS  Google Scholar 

  • Denby, K., and Gehring, C. (2005). Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol 23, 547–552.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2005). AREB1 Is a Transcription Activator of Novel ABRE-Dependent ABA Signaling That Enhances Drought Stress Tolerance in Arabidopsis. Plant Cell 17, 3470–3488.

    Article  PubMed  CAS  Google Scholar 

  • Garg, A.K., Kim, J.K., Owens, T.G., Ranwala, A.P., Choi, Y.D., Kochian, L.V., and Wu, R.J. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99, 15898–15903.

    Google Scholar 

  • Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., Andre, B., Arkin, A.P., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito, R., Brachat, S., Campanaro, S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K.D., Flaherty, P., Foury, F., Garfinkel, D.J., Gerstein, M., Gotte, D., Guldener, U., Hegemann, J.H., Hempel, S., Herman, Z., Jaramillo, D.F., Kelly, D.E., Kelly, S.L., Kotter, P., LaBonte, D., Lamb, D.C., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, P., Ooi, S.L., Revuelta, J.L., Roberts, C.J., Rose, M., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B., Shoemaker, D.D., Sookhai-Mahadeo, S., Storms, R.K., Strathern, J.N., Valle, G., Voet, M., Volckaert, G., Wang, C.Y., Ward, T.R., Wilhelmy, J., Winzeler, E.A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J.D., Snyder, M., Philippsen, P., Davis, R.W., and Johnston, M. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

    Article  PubMed  CAS  Google Scholar 

  • Goddijn, O.J., and van Dun, K. (1999). Trehalose metabolism in plants. Trends Plant Sci 4, 315–319.

    Article  PubMed  Google Scholar 

  • Goodwin, S.M., Rashotte, A.M., Rahman, M., Feldmann, K.A., and Jenks, M.A. (2005). Wax constituents on the inflorescence stems of double eceriferum mutants in Arabidopsis reveal complex gene interactions. Phytochemistry 66, 771–780.

    Article  PubMed  CAS  Google Scholar 

  • Granier, C., Aguirrezabal, L., Chenu, K., Cookson, S.J., Dauzat, M., Hamard, P., Thioux, J.J., Rolland, G., Bouchier-Combaud, S., Lebaudy, A., Muller, B., Simonneau, T., and Tardieu, F. (2006). PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 169, 623–635.

    Article  PubMed  Google Scholar 

  • Guo, L., Wang, Z.Y., Lin, H., Cui, W.E., Chen, J., Liu, M., Chen, Z.L., Qu, L.J., and Gu, H. (2006). Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res 16, 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Gutterson, N., and Zhang, J.Z. (2004). Genomics applications to biotech traits: a revolution in progress? Curr Opin Plant Biol 7, 226–230.

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach, A., Yang, Y., and Grill, E. (2003). Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6, 470–479.

    Article  PubMed  CAS  Google Scholar 

  • Hong, B., Barg, R., and Ho, T.H. (1992). Developmental and organ-specific expression of an ABA- and stress-induced protein in barley. Plant Mol Biol 18, 663–674.

    Article  PubMed  CAS  Google Scholar 

  • Inan, G., Zhang, Q., Li, P., Wang, Z., Cao, Z., Zhang, H., Zhang, C., Quist, T.M., Goodwin, S.M., Zhu, J., Shi, H., Damsz, B., Charbaji, T., Gong, Q., Ma, S., Fredricksen, M., Galbraith, D.W., Jenks, M.A., Rhodes, D., Hasegawa, P.M., Bohnert, H.J., Joly, R.J., Bressan, R.A., and Zhu, J.K. (2004). Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135, 1718–1737.

    Article  PubMed  CAS  Google Scholar 

  • Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27, 325–333.

    Article  PubMed  CAS  Google Scholar 

  • Jang, I.C., Oh, S.J., Seo, J.S., Choi, W.B., Song, S.I., Kim, C.H., Kim, Y.S., Seo, H.S., Choi, Y.D., Nahm, B.H., and Kim, J.K. (2003). Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131, 516–524.

    Article  PubMed  CAS  Google Scholar 

  • Jang, J.Y., Kim, D.G., Kim, Y.O., Kim, J.S., and Kang, H. (2004). An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54, 713–725.

    Article  PubMed  CAS  Google Scholar 

  • Jenks, M.A., Rashotte, A.M., Tuttle, H.A., and Feldmann, K.A. (1996). Mutants in Arabidopsis thaliana Altered in Epicuticular Wax and Leaf Morphology. Plant Physiol 110, 377–385.

    PubMed  CAS  Google Scholar 

  • Johansson, I., Karlsson, M., Johanson, U., Larsson, C., and Kjellbom, P. (2000). The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 1465, 324–342.

    Article  PubMed  CAS  Google Scholar 

  • Jones, H.G. (2004). What is water use efficiency? In Water use efficiency in plant biology, M.A. Bacon, ed (Boca Raton: CRC Press LLC), pp. 27–41.

    Google Scholar 

  • Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., Welchman, D.P., Zipperlen, P., and Ahringer, J. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J.Y., Choi, H.I., Im, M.Y., and Kim, S.Y. (2002). Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14, 343–357.

    Article  PubMed  CAS  Google Scholar 

  • Kasuga, M., Miura, S., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45, 346–350.

    Article  PubMed  CAS  Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17, 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Kjemtrup, S., Boyes, D.C., Christensen, C., McCaskill, A.J., Hylton, M., and Davis, K. (2003). Growth stage-based phenotypic profiling of plants. Methods Mol Biol 236, 427–442.

    PubMed  CAS  Google Scholar 

  • Kovtun, Y., Chiu, W.L., Tena, G., and Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97, 2940–2945.

    Article  PubMed  CAS  Google Scholar 

  • Kreps, J.A., Wu, Y., Chang, H.S., Zhu, T., Wang, X., and Harper, J.F. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130, 2129–2141.

    Article  PubMed  CAS  Google Scholar 

  • Krysan, P.J., Young, J.C., and Sussman, M.R. (1999). T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11, 2283–2290.

    Article  PubMed  CAS  Google Scholar 

  • Kunst, L., and Samuels, A.L. (2003). Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42, 51–80.

    Article  PubMed  CAS  Google Scholar 

  • Laporte, M.M., Shen, B., and Tarczynski, M.C. (2002). Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 53, 699–705.

    Article  PubMed  CAS  Google Scholar 

  • Leung, J., and Giraudat, J. (1998). Abscisic Acid Signal Transduction. Annu Rev Plant Physiol Plant Mol Biol 49, 199–222.

    Article  PubMed  CAS  Google Scholar 

  • Levchenko, V., Konrad, K.R., Dietrich, P., Roelfsema, M.R., and Hedrich, R. (2005). Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Natl Acad Sci U S A 102, 4203–4208.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391–1406.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Molina, L., and Chua, N.H. (2000). A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol 41, 541–547.

    PubMed  CAS  Google Scholar 

  • Maggio, A., Miyazaki, S., Veronese, P., Fujita, T., Ibeas, J.I., Damsz, B., Narasimhan, M.L., Hasegawa, P.M., Joly, R.J., and Bressan, R.A. (2002). Does proline accumulation play an active role in stress-induced growth reduction? Plant J 31, 699–712.

    Article  PubMed  CAS  Google Scholar 

  • Marsch-Martinez, N., Greco, R., Van Arkel, G., Herrera-Estrella, L., and Pereira, A. (2002). Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol 129, 1544–1556.

    Article  PubMed  CAS  Google Scholar 

  • Masle, J., Gilmore, S.R., and Farquhar, G.D. (2005). The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436, 866–870.

    Article  PubMed  CAS  Google Scholar 

  • McElroy, D. (2004). Valuing the product development cycle in agricultural biotechnology–what’s in a name? Nat Biotechnol 22, 817–822.

    Article  PubMed  CAS  Google Scholar 

  • McKersie, B.D., Bowley, S.R., and Jones, K.S. (1999). Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 119, 839–848.

    Article  PubMed  CAS  Google Scholar 

  • McKersie, B.D., Bowley, S.R., Harjanto, E., and Leprince, O. (1996). Water-Deficit Tolerance and Field Performance of Transgenic Alfalfa Overexpressing Superoxide Dismutase. Plant Physiol 111, 1177–1181.

    PubMed  CAS  Google Scholar 

  • McKersie, B.D., Murnaghan, J., Jones, K.S., and Bowley, S.R. (2000). Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol 122, 1427–1437.

    Article  PubMed  CAS  Google Scholar 

  • Mitra, J. (2001). Genetics and genetic improvement of drought resistance in crop plants. Current Science 80, 758–763.

    CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7, 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci 11, 15–19.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, N., Yoshida, T., Murayama, M., Asami, T., Shinozaki, K., and Hirayama, T. (2004). Isolation and characterization of novel mutants affecting the abscisic acid sensitivity of Arabidopsis germination and seedling growth. Plant Cell Physiol 45, 1485–1499.

    Article  PubMed  CAS  Google Scholar 

  • Oberschall, A., Deak, M., Torok, K., Sass, L., Vass, I., Kovacs, I., Feher, A., Dudits, D., and Horvath, G.V. (2000). A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J 24, 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Parinov, S., and Sundaresan, V. (2000). Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr Opin Biotechnol 11, 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Patonnier, M.P., Peltier, J.P., and Marigo, G. (1999). Drought-induced increase in xylem malate and mannitol concentration and closure of Fraxinus excelsior L. stomata. J Exp Bot 50, 1223–1229.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E.A.H., Terry, N., Sears, T., Kim, H., Zayed, A., Hwang, S.B., van Dun, K., Voogd, E., Verwoerd, T.C., Krutwagen, R.W., and Goodijn, O.J.M. (1998). Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152, 525–532.

    CAS  Google Scholar 

  • Qin, F., Sakuma, Y., Li, J., Liu, Q., Li, Y.Q., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45, 1042–1052.

    Article  PubMed  CAS  Google Scholar 

  • Qin, X., and Zeevaart, J.A. (2002). Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128, 544–551.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandra Reddy, A., Chaitanya, K.V., and Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161, 1189–1202.

    Article  PubMed  CAS  Google Scholar 

  • Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K., and Yu, G. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105–2110.

    Article  PubMed  CAS  Google Scholar 

  • Romero, C., Belles, J.M., Vaya, J.L., Serrano, R., and Culianez-Macia, F.A. (1997). Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: Pleiotropic phenotypes include drought tolerance. Planta 201, 293–297.

    Article  CAS  PubMed  Google Scholar 

  • Rontein, D., Basset, G., and Hanson, A.D. (2002). Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4, 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression. Plant Cell 18, 1292–1309.

    Article  PubMed  CAS  Google Scholar 

  • Samis, K., Bowley, S., and McKersie, B. (2002). Pyramiding Mn-superoxide dismutase transgenes to improve persistence and biomass production in alfalfa. J Exp Bot 53, 1343–1350.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, A., Kirch, T., Gigolashvili, T., Mock, H.P., Sonnewald, U., Simon, R., Flugge, U.I., and Werr, W. (2005). A transposon-based activation-tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations. FEBS Lett 579, 4622–4628.

    PubMed  CAS  Google Scholar 

  • Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., and Shinozaki, K. (2001). Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Serraj, R., and Sinclair, T.R. (2002). Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25, 333–341.

    Article  PubMed  Google Scholar 

  • Shou, H., Bordallo, P., and Wang, K. (2004). Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55, 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  • Shpak, E.D., McAbee, J.M., Pillitteri, L.J., and Torii, K.U. (2005). Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309, 290–293.

    Article  PubMed  CAS  Google Scholar 

  • Sivamani, E., Bahieldin, A., Wraith, J.M., Al-Niemi, T., Dyer, W.E., Ho, T.D., and Qu, R. (2000). Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Science 155, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Somerville, C., and Koornneef, M. (2002). A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3, 883–889.

    Article  PubMed  CAS  Google Scholar 

  • Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94, 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, F., Ding, X., and Kenefick, D.G. (1992). Group 3 LEA Gene HVA1 Regulation by Cold Acclimation and Deacclimation in Two Barley Cultivars with Varying Freeze Resistance. Plant Physiol 99, 338–340.

    Article  PubMed  CAS  Google Scholar 

  • Taji, T., Seki, M., Satou, M., Sakurai, T., Kobayashi, M., Ishiyama, K., Narusaka, Y., Narusaka, M., Zhu, J.K., and Shinozaki, K. (2004). Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135, 1697–1709.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, I.B., Burbidge, A., and Thompson, A.J. (2000). Control of abscisic acid synthesis. J Exp Bot 51, 1563–1574.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A., and Taylor, I.B. (2000). Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J 23, 363–374.

    Article  PubMed  CAS  Google Scholar 

  • Umezawa, T., Yoshida, R., Maruyama, K., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2004). SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci U S A 101, 17306–17311.

    Article  PubMed  CAS  Google Scholar 

  • Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17, 1–10.

    Article  CAS  Google Scholar 

  • van der Weele, C.M., Spollen, W.G., Sharp, R.E., and Baskin, T.I. (2000). Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J Exp Bot 51, 1555–1562.

    Article  PubMed  Google Scholar 

  • Vander Jagt, D.L., Robinson, B., Taylor, K.K., and Hunsaker, L.A. (1992). Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J Biol Chem 267, 4364–4369.

    PubMed  CAS  Google Scholar 

  • Villalobos, M.A., Bartels, D., and Iturriaga, G. (2004). Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol 135, 309–324.

    Article  PubMed  CAS  Google Scholar 

  • Vinocur, B., and Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F.Z., Wang, Q.B., Kwon, S.Y., Kwak, S.S., and Su, W.A. (2005a). Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162, 465–472.

    Article  CAS  Google Scholar 

  • Wang, W., Vinocur, B., and Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Ying, J., Kuzma, M., Chalifoux, M., Sample, A., McArthur, C., Uchacz, T., Sarvas, C., Wan, J., Dennis, D.T., McCourt, P., and Huang, Y. (2005b). Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43, 413–424.

    Article  CAS  Google Scholar 

  • Weigel, D., Ahn, J.H., Blazquez, M.A., Borevitz, J.O., Christensen, S.K., Fankhauser, C., Ferrandiz, C., Kardailsky, I., Malancharuvil, E.J., Neff, M.M., Nguyen, J.T., Sato, S., Wang, Z.Y., Xia, Y., Dixon, R.A., Harrison, M.J., Lamb, C.J., Yanofsky, M.F., and Chory, J. (2000). Activation tagging in Arabidopsis. Plant Physiol 122, 1003–1013.

    Article  PubMed  CAS  Google Scholar 

  • Winkler, R.G., Frank, M.R., Galbraith, D.W., Feyereisen, R., and Feldmann, K.A. (1998). Systematic reverse genetics of transfer-DNA-tagged lines of Arabidopsis. Isolation of mutations in the cytochrome p450 gene superfamily. Plant Physiol 118, 743–750.

    Article  PubMed  CAS  Google Scholar 

  • Yalovsky, S., Kulukian, A., Rodriguez-Concepcion, M., Young, C.A., and Gruissem, W. (2000). Functional requirement of plant farnesyltransferase during development in Arabidopsis. Plant Cell 12, 1267–1278.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J.-Y., Broeckling, C.D., Blancaflor, E.B., Sledge, M.K., Sumner, L.W., and Wang, Z.-Y. (2005). Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42, 689–707.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J.Z. (2003). Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6, 430–440.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J.Z., Creelman, R.A., and Zhu, J.K. (2004a). From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135, 615–621.

    Article  CAS  Google Scholar 

  • Zhang, X., Fowler, S.G., Cheng, H., Lou, Y., Rhee, S.Y., Stockinger, E.J., and Thomashow, M.F. (2004b). Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39, 905–919.

    Article  CAS  Google Scholar 

  • Ziegelhoffer, E.C., Medrano, L.J., and Meyerowitz, E.M. (2000). Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development. Proc Natl Acad Sci U S A 97, 7633–7638.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Christensen, C.A., Feldmann, K.A. (2007). Biotechnology Approaches To Engineering Drought Tolerant Crop. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_14

Download citation

Publish with us

Policies and ethics