Skip to main content

Abstract

Understanding gene regulation mechanisms is important for genetic improvement of abiotic stress resistance of crops. In response to developmental and environmental cues, plants employ a plethora of gene regulation mechanisms, one of which is posttranscriptional regulation of gene expression by non-protein coding small RNAs. Samll RNAs, namely, microRNAs (miRNAs) and short interfering RNAs (siRNAs), are ∼20 to 24-nucleotide single stranded RNAs. miRNAs are synthesized from MIR gene transcripts, while siRNAs are synthesized from dsRNA formed by transcripts of heterochromatin DNA repeats, mRNAs encoded by natural cis-antisense gene pairs and miRNA directed cleavage of ssRNA/mRNA. Small RNAs regulate the expression of complementary/partially complementary genes by directing mRNA cleavage, translational repression, chromatin remodeling and DNA methylation. Several stress responsive small RNAs have been identified in plants and their role in oxidative stress tolerance, osmolyte accumulation/osmoprotection and nutrient starvation response have been established. Under abiotic stresses, stress-upregulated miRNAs may down-regulate their target genes, which are likely negative regulators of stress tolerance, while stress down regulated miRNAs may result in accumulation of their target gene mRNAs, which may positively regulate stress tolerance. Overexpression of miRNA-resistant target genes will help overcome post-transcriptional gene silencing, and thus may lead to better expression of engineered trait in transgenic plants. Understanding the roles of small RNAs in transcriptome homeostasis, cellular tolerance, phenological and developmental plasticity of plants under abiotic stress and recovery will help genetic engineering of abiotic stress resistance in crop plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP. (2004). Modulation of floral development by a gibberellin-regulated microRNA. Development 131: 3357–65.

    Article  PubMed  CAS  Google Scholar 

  • Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V. (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res. 15: 78–91.

    Article  PubMed  CAS  Google Scholar 

  • Ahlfors R, Lang S, Overmyer K, Jaspers P, Brosche M, Taurianinen A, Kollist H, Tuominen H, Belles-Boix E, Piippo M, Inze D, Palva ET, Kangasjarvi J. (2004). Arabidopsis radical-induced cell death1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell 16: 1925–1937.

    Article  PubMed  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS. (2002). Role of superoxide dismutases in controlling oxidative stress in plants. J Exp Bot. 53: 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  • Aukerman MJ, Sakai H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15: 2730–2741.

    Article  PubMed  CAS  Google Scholar 

  • Aung K, Lin SI, Wu CC, Huang YT, Su Cl, Chiou TJ. (2006). pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 141: 1000–1011.

    Article  PubMed  CAS  Google Scholar 

  • Ayliffe MA, Roberts JK, Mitchell HJ, Zhang R, Lawrence GJ, Ellis JG, Pryor TJ. (2002). A plant gene up-regulated at rust infection sites. Plant Physiol. 129: 169–180.

    Article  PubMed  CAS  Google Scholar 

  • Bao N, Lye KW, Barton MK. (2004). MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7: 653–662.

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Datt Pant B, Stitt M, Scheible WR. (20060. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 141: 988–999.

    Google Scholar 

  • Bartel DP. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  PubMed  CAS  Google Scholar 

  • Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S. Gerstein M, Snyder M. (2004). Global identification of human transcribed sequences with genome tiling arrays. Science 306: 2242–2246.

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S. 2006. Unraveling abiotic stress tolerance mechanisms - Getting genomics going. Curr Opin Plant Biol. 9: 180–188

    Article  PubMed  CAS  Google Scholar 

  • Boi S, Solda G, Tenchini ML. (2004). Shedding light on the dark side of the genome: overlapping genes in higher eukaryotes. Curr Genomics 5, 509–524.

    Article  CAS  Google Scholar 

  • Bonnet E, Wuyts J, Rouzé P, Van de Peer Y. (2004). Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Poc Natl Acad Sci USA. 101: 11511–11516

    Article  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell123: 1279–1291.

    Article  PubMed  CAS  Google Scholar 

  • Bot AJ, Nachtergaele FO, Young A. (2000). Land resource potential and constraints at regional and country levels. In: World Soil Resources Reports 90, Land and Water Development Division, FAO, Rome, 2000. pp: 17–24

    Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo SJ, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K. (2000). Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol. 18: 630–634.

    Article  PubMed  CAS  Google Scholar 

  • Chan SW, Henderson IR, and Jacobsen SE. (2005). Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet.6: 351–360.

    Article  CAS  Google Scholar 

  • Chan SW, Zilberman D, Xie Z, Johansen LK, Carrington JC, Jacobsen SE. (2004). RNA silencing genes control de novo DNA methylation. Science 303: 1336

    Article  PubMed  CAS  Google Scholar 

  • Chen X. (2004). A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science303: 2022–25

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK. (2005). Understanding and improving salt tolerance in plants. Crop Sci. 45: 437–448.

    Article  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee B.-h, Hong X, Agarwal M, Zhu JK. (2003). ICE1, a regulator of cold induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17: 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK. (2004). Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot. 55: 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Gene regulation during cold acclimation in plants. Physiol Plant. 126: 52–61.

    Article  CAS  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL. (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell 18: 412–21

    Article  PubMed  CAS  Google Scholar 

  • Dharmasiri S, Estelle M. (2002). The role of regulated protein degradation in auxin response. Plant Mol Biol. 9: 401–409.

    Article  Google Scholar 

  • Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R, Frommer WB. (2004). The Role of delta1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16: 3413–3425.

    Article  PubMed  CAS  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Nat Acad Sci USA 103: 8281–8286.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson DL, Guikema JA,. Paulsen GM. (1990). Ubiquitin pool modulation and protein degradation in wheat roots during high temperature stress. Plant Physiol. 92: 740–746.

    PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 17: 1866–1875.

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol. 15: 2038–43.

    Article  PubMed  CAS  Google Scholar 

  • Gasciolli V, Mallory AC, Bartel DP, Vaucheret H. (2005). Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol. 15: 1494–1500.

    Article  PubMed  CAS  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH. (2005). MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17: 1376–86

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC. (1999). A novel species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286: 950–952.

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ and De Kok LJ. 2006. Managing sulphur metabolism in plants. Plant, Cell Environ. 29: 382–395

    Article  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS. (2000). Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol. 122:1129–1136.

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2001). Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D, eds. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Jen CH, Michalopoulos I, Westhead DR, Meyer P. (2005). Natural antisense transcripts with coding capacity in Arabidopsis may have a regulatory role that is not linked to double-stranded RNA degradation. Genome Biol. 6: R51.

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B. (2006). MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 57: 19–53

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades, MW, Bartel DP. (2004). Computational identification of plant miRNAs and their targets, including a stress-induced miRNA. Mol Cell 14: 787–799

    Article  PubMed  CAS  Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao G, Hu C, Verma DPS (1995) Overexpression of 1-pyrroline-5-carboxylate synthetase increases proline overproduction and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387–1394

    Google Scholar 

  • Kidner CA, Martienssen RA. (2005). The developmental role of microRNA in plants. Curr Opin Plant Biol. 8:38–44.

    Article  PubMed  CAS  Google Scholar 

  • Kurihara Y, Takashi Y, Watanabe Y. (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12: 206–212.

    Article  PubMed  CAS  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, Traas J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131: 4311–22.

    Article  PubMed  CAS  Google Scholar 

  • Lee B-h, Henderson DA, Zhu JK. (2005). The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17: 3155–3175.

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V. (1993). The C. elegansheterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.

    Article  PubMed  CAS  Google Scholar 

  • Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R. (2004). Role of transposable elements in heterochromatin and epigenetic control. Nature 430: 471–476

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL. (2005). Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17: 2186–2203.

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004a). MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5’ region. EMBO J. 23: 3356–64

    Article  CAS  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP, Bartel B. (2004b). MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol. 14:1035–46.

    Article  CAS  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B. (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17: 1360–1375.

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Vaucheret H. (2006). Functions of microRNAs and related small RNAs in plants. Nature Genet. 38: S31–S36.

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Gubler F. (2005). The Arabidopsis GAMYB-Like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17: 705–721.

    Article  PubMed  CAS  Google Scholar 

  • Mittler R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Parry G, Estelle M. 2004. The ubiquitin-proteasome pathway and plant development. Plant Cell 16: 3181–95.

    Article  PubMed  CAS  Google Scholar 

  • Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y., Wada, K., Tsukaya, H., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 18: 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Ortiz C, Cardemil L (2001) Heat-shock responses in two leguminous plants: a comparative study. J Exp Bot. 52: 1711–9.

    Article  PubMed  CAS  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. (2003) Control of leafmorphogenesis by microRNAs. Nature 425: 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Payton P, Allen RD, Trolinder N, Holaday AS. (1997). Over-expression of chloroplast-targeted Mn superoxide dismutase in cotton (Gossypium hirsutum L., cv. Coker 312) does not alter the reduction of photosynthesis after short exposures to low temperature and high light intensity. Photosynth Res. 52: 233-244

    Article  CAS  Google Scholar 

  • Peragine A, Yoshikawa M, Wu G, Albrecht HL, and Poethig RS. (2004). SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 18: 2368–2379.

    Article  PubMed  CAS  Google Scholar 

  • Pitcher LH, Brennan E, Hurley A, Dunsmuir P, Tepperman JM, Zilinskas BA. (1991). Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol. 97: 452–455

    Article  PubMed  CAS  Google Scholar 

  • Raghothama KG. (1999). Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol. 50: 665–693.

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J. (2006) Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu Rev Plant Biol. 57: 675–709

    Article  PubMed  CAS  Google Scholar 

  • Ronemus M, Vaughn MW, Martienssen RA. (2006). MicroRNA-targeted and small interfering RNA–mediated mRNA degradation is regulated by argonaute, dicer, and RNA-dependent RNA polymerase in Arabidopsis. Plant Cell 18: 1559–1574

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. (2005). Specific effects of microRNAs on the plant transcriptome. Dev Cell 8: 517–527

    Article  PubMed  CAS  Google Scholar 

  • Somerville CR, Briscoe J (2001). Genetic engineering and water. Science 292: 2217

    Article  PubMed  CAS  Google Scholar 

  • Sugano S, Andronis C, Ong MS, Green RM, Tobin EM. (1999). The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Poc Natl Acad Sci USA. 96: 12362-12366.

    Article  CAS  Google Scholar 

  • Sunkar R, Girke T, Jain PK, Zhu JK. (2005). Cloning and characterization of microRNAs from rice. Plant Cell 17:1397–411.

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK. (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18: 2051–2065

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu JK. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16: 2001–2019.

    Article  PubMed  CAS  Google Scholar 

  • Tepperman JM, Dunsmuir P. (1990). Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol. 14: 501–11.

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. 2006. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotech. 17: 113–22.

    PubMed  CAS  Google Scholar 

  • Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP, Crete P. (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16: 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY. (2005a). Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–16

    Article  CAS  Google Scholar 

  • Wang XJ, Gaasterland T, Chua NH. (2005b). Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol. 6: R30.

    Article  CAS  Google Scholar 

  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC. (2005). Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHDZIPtarget genes. Development 132: 3657–3668

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC. (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2: 642–652.

    Article  CAS  Google Scholar 

  • Xie ZX, Allen E, Wilken A, Carrington JC. (2005). DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA 102: 12984–12989.

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Lim J, Dale JM, Chen HM, Shinn P, Palm CJ, Southwick AM, Wu AC, Kim C, Nguyen M, Pham P, Cheuk R, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MM, Tang CC, Onodera CS, Deng JM, Akiyama K, Ansari Y, Arakawa T, Banh J, Banno F, Bowser L, Brooks S, Carninci P, Chao Q, Choy N, Enju A, Goldsmith AD, Gurjal M, Hansen NF, Hayashizaki Y, Johnson-Hopson C, Hsuan VW, Iida K, Karnes M, Khan S, Koesema E, Ishida J, Jiang PX, Jones T, Kawai J, Kamiya A, Meyers C, Nakajima M, Narusaka M, Seki M, Sakurai T, Satou M, Tamse R, Vaysberg M, Wallender EK, Wong C, Yamamura Y, Yuan S, Shinozaki K, Davis RW, Theologis A, Ecker JR. (2003). Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302: 842–846.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Blumwald E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 10: 615–620.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 57: 781–803.

    Article  PubMed  CAS  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N and Flowers TJ. 1999. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ. 22: 559–565.

    Article  CAS  Google Scholar 

  • Yoshikawa M, Peragine A, Park MY, and Poethig RS (2005). A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev. 19: 2164–2175.

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK. (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 53: 247–73.

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK. (2003). Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol. 6: 441–445.

    Article  PubMed  CAS  Google Scholar 

  • Zilberman D, Cao X, Johansen LK, Xie Z, Carrington JC, Jacobsen SE. (2004). Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol. 14: 1214–20.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136: 2621–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Chinnusamy, V., Zhu, J., Zhou, T., Zhu, JK. (2007). Small Rnas: Big Role In Abiotic Stress Tolerance Of Plants. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_10

Download citation

Publish with us

Policies and ethics