Skip to main content

QUANTUM DOT BIO-TEMPLATE FOR RAPID DETECTION OF PATHOGENIC SUBSTANCES

  • Conference paper
Book cover Photon-based Nanoscience and Nanobiotechnology

Part of the book series: NATO Science Series ((NAII,volume 239))

Abstract

To address some of the technological problems related to the proposed a novel approach based on the application of arrays of epitaxial quantum dots (eQD) that have been known for their applications in application of colloidal semiconductor nanocrystals for biosensing, we have advanced communication devices such as quantum dot lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bruchez, M. Moronne, P. Gin et al., “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).

    Article  CAS  Google Scholar 

  2. P. Mitchell, “Turning the spotlight on cellular imaging – Advances in imaging are enabling researchers to track more accurately the localization of macromolecules in cells,” Nature Biotechnology 19(11), 1013–1017 (2001).

    Article  CAS  Google Scholar 

  3. Tuan Vo-Dinh, Biomedical photonics handbook, CRC Press, Boca Raton, Fla., 2003.

    Google Scholar 

  4. Sungchul Hohng and Taekjip Ha, “Near-Complete Suppression of Quantum Dot Blinking in Ambient Conditions,” J. Am. Chem. Soc. 126(5), 1324–1325 (2004).

    Article  Google Scholar 

  5. I. L. Medintz, A. R. Clapp, H. Mattoussi et al., “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nature Materials 2(9), 630–638 (2003).

    Article  CAS  Google Scholar 

  6. P. J. Poole, R. L. Williams, J. Lefebvre et al., “Using As/P exchange processes to modify InAs/InP quantum dots,” Journal of Crystal Growth 257(1–2), 89–96 (2003).

    Article  CAS  Google Scholar 

  7. R. L. Williams, G. C. Aers, J. Lefebvre et al., “Quantum dot site-selection using in situ prepared nano-templates,” Physica E-Low-Dimensional Systems & Nanostructures 13 (2–4), 1200–1203 (2002).

    Article  CAS  Google Scholar 

  8. J. Lefebvre, P. J. Poole, G. C. Aers et al., “Tunable emission from InAs quantum dots on InP nanotemplates,” Journal of Vacuum Science & Technology B 20(5), 2173–2176 (2002).

    Article  CAS  Google Scholar 

  9. A. Passaseo, G. Maruccio, M. De Vittorio et al., “Dependence of the emission wavelength on the internal electric field in quantum-dot laser structures grown by metal-organic chemical-vapor deposition,” Appl. Phys. Lett. 79(10), 1435–1437 (2001).

    Article  CAS  Google Scholar 

  10. Klaus Adlkofer, Eric F. Duijs, Frank Findeis et al., “Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density,” Phys. Chem. Chem. Phys. 4, 785–790 (2002).

    Google Scholar 

  11. Kh. Moumanis, X. Ding, J.J. Dubowski et al., “Aging and detergent wasing effects of the surface of (001) and (110) GaAs passivated with hexadecanethiol,” J. Appl. Phys., in print (2006).

    Google Scholar 

  12. J.J. Dubowski, M. Julier, G.I. Sproule et al., “Laser-assisted dry etching ablation for microstructuring of III-V semiconductors,” Mat. Res. Soc. Symp. Proc. 397, 509–518 (1996).

    CAS  Google Scholar 

  13. J. J. Dubowski, B. E. Rosenquist, D. J. Lockwood et al., “Structure damage in reactiveion and laser etched lnP/GalnAs microstructures,” J. Appl. Phys. 78(3), 1488–1491 (1995).

    Article  CAS  Google Scholar 

  14. J. J. Dubowski, Y. Feng, P. J. Poole et al., “Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser-induced quantum well intermixing,” J. Vac. Sci. Technol. A. 20(4), 1426–1429 (2002).

    Article  CAS  Google Scholar 

  15. J. J. Dubowski, C. N. Allen, and S. Fafard, “Laser-induced InAs/GaAs quantum dot intermixing,” Appl. Phys. Lett. 77(22), 3583–3585 (2000).

    Article  CAS  Google Scholar 

  16. Patrick Vermette, Thomas Gengenbach, Upulie Divisekera et al., “Immobilization and surface characterization of NeutrAvidin biotin-binding protein on different hydrogel interlayers,” J. Coll. Int. Sci. 259, 13–26 (2003).

    Article  CAS  Google Scholar 

  17. Xiaodi Su, Ying-Ju Wu, Rudolf Robelek et al., “Surface Plasmon Resonance Spectroscopy and Quartz Crystal Microbalance Study of Streptavidin Film Structure Effects on Biotinylated DNA Assembly and Target DNA Hybridization,” Langmuir 21 (1), 348–353 (2005).

    Article  Google Scholar 

  18. J. Ladd, C. Boozer, Q. M. Yu et al., “DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge,” Langmuir 20(19), 8090–8095 (2004).

    Article  CAS  Google Scholar 

  19. Tom T. Huang, Jennifer Sturgis, Rafael Gomez et al., “Composite Surface for Blocking Bacterial Adsorption on Protein Biochips,” Biotech. Bioeng. 81(5), 618–624 (2003).

    Article  CAS  Google Scholar 

  20. Reid N. Orth, T.G. Clark, and H.G. Craighead, “Avidin-biotin micropatterning methods for biosensor applications,” Biomedical Microdevices 5:1, 29–34 (2003).

    Article  CAS  Google Scholar 

  21. Ting Hou, C. Michael Greenlief, Steven W. Keller et al., “Passivation of GaAs (100) with an Adhesion Promoting Self-Assembled Monolayer,” Chem. Mater. 9(12), 3181–3186 (1997).

    Article  Google Scholar 

  22. Fazila Seker, Kathleen Meeker, Thomas F. Kuech et al., “Surface Chemistry of Prototypical Bulk II-VI and III-V Semiconductors and Implications for Chemical Sensing,” Chem. Rev. 100, 2505–2536 (2000).

    Article  Google Scholar 

  23. Ximing Ding, Khalid Moumanis, Jan J. Dubowski et al., “Fourier-transform infrared and photoluminescence spectroscopies of self-assembled monolayers of long-chain thiols on (001) GaAs,” J. Appl. Phys. 99(5), 54701 (2006).

    Article  Google Scholar 

  24. O. Voznyy and J. J. Dubowski, “Structure, bonding nature and binding energy of alkanethiolate on As-rich GaAs (001) surface: a density functional theory study,” J. Phys. Chem. B, submitted (2006).

    Google Scholar 

  25. G. Marshall, private communication, 2006.

    Google Scholar 

  26. Hong Xing You and Christopher R. Lowe, “AFM Studies of Protein Adsorption: 2. Characterization of Immunoglobulin G Adsorption by Detergent Washing,” J. Coll. Int. Sci. 182, 586–601 (1996).

    Article  Google Scholar 

  27. William A. Goddard, Donald W. Brenner, Sergey E. Lyshevski et al., CRC Press, Boca Raton, Fla., 2003.

    Google Scholar 

  28. X. Ding, Kh. Moumanis, J.J. Dubowski et al., “Immobilization of avidin on (001) GaAs surface,” Appl. Phys. A 83(3), 357–360 (2006).

    Article  CAS  Google Scholar 

  29. J. Christopher Love, Lara A. Estroff, Jennah K. Kriebel et al., “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology,” Chem. Rev. 105(4), 1103–1169 (2005).

    Article  Google Scholar 

  30. Michael Riepl, Mattias Ostblom, Ingemar Lundstrom et al., “Molecular Gradients: An Efficient Approach for Optimizing the Surface Properties of Biomaterials and Biochips,” Langmuir 21(3), 1042 (2005).

    Article  CAS  Google Scholar 

  31. X. Ding, Kh. Moumanis, J.J. Dubowski et al., “A study of binding biotinylated nanobeads to the surface of (001) GaAs,” SPIE Conf. Proc. Vol. 6106, L1–L7 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

DUBOWSKI, J.J. (2006). QUANTUM DOT BIO-TEMPLATE FOR RAPID DETECTION OF PATHOGENIC SUBSTANCES. In: Dubowski, J.J., Tanev, S. (eds) Photon-based Nanoscience and Nanobiotechnology. NATO Science Series, vol 239. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5523-2_7

Download citation

Publish with us

Policies and ethics