Skip to main content

PHOTONIC AND NON-PHOTONIC BASED NANOPARTICLES IN CANCER IMAGING AND THERAPEUTICS

  • Conference paper
Book cover Photon-based Nanoscience and Nanobiotechnology

Part of the book series: NATO Science Series ((NAII,volume 239))

Abstract

This chapter presents an overview of the potential uses of nanoparticles in oncology. This includes the principles underlying the use of nanoparticles, firstly to enhance established treatment techniques such as radiation therapy, chemotherapy and surgery, as well as emerging treatment modalities, and secondly as contrast-enhancing agents to improve established tumor imaging methods, including X-ray, magnetic resonance, ultrasound and radionuclide techniques. In addition, photonic-based techniques will be emphasized, both therapeutic (photothermal, photomechanical and photodynamic therapies and fluorescence imageguided surgery) and diagnostic (fluorescence imaging, optoacoustic tomography and optical coherence tomography).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Cancer Society, 2006, Cancer Facts and Figures; https://www.cancer.org.

    Google Scholar 

  • Bagwe, R. P., Zhao, X. and Tan, W., 2003, Bioconjugated luminescent nanoparticles for biological applications, J. Disp. Sci. Tech. 24:453–464.

    Article  CAS  Google Scholar 

  • Bharali, T. J., Lucey, D. W., Jayakumar, H., Pudavar, H.E. and Prasad, P.N, 2005, Folate receptor-mediated delivery of InP quantum dots for bioimaging using confocal and twophoton microscopy, J. Am. Chem. Soc. 127:11347–11371.

    Article  CAS  Google Scholar 

  • Bogaards, A., Varma, A., Zhang, K., Zach, D., Bisland, S.K., Moriyama, E. H., Lilge, L., Muller, P. J. and Wilson, B.C., 2005, Fluorescence image-guided brain tumour resection with adjuvant metronomic photodynamic therapy: Pre-clinical model and technology development, Photochem. Photobiol. Sci. 4: 438–442.

    Article  CAS  Google Scholar 

  • Brigger, I., Dubernet, C. and Couvreur, P., 2002, Nanoparticles in cancer therapy and diagnosis, Adv. Drug Deliv. Rev. 54:631–651.

    Article  CAS  Google Scholar 

  • Brannon-Peppas, L. and Blanchtte, J.O., 2004, Nanoparticle and targeted systems for cancer therapy, Adv. Drug Deliv. Rev. 56:1649–1659.

    Article  CAS  Google Scholar 

  • Brouma, B. E. and Tearney, G. J., 2001, Handbook of Optical Coherence Tomography. Dekker, NY.

    Google Scholar 

  • Chang, E., Miller, J. S., Sun, J., Yu, W. W., Colvin, V. L., Drezek, R. and West, J. L., 2005, Protease-activated quantum dot probes, Biochem. Biophys. Res. Comm. 334:137–1321.

    Google Scholar 

  • Chen, J., Stefflova, K., Niedre, M. J., Wilson, B. C., Chance, B., Glickson, J. D. and Zheng, G., 2004, Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation, J. Am. Chem. Soc. 126:11450–11451.

    Article  CAS  Google Scholar 

  • Chen, J., Saeki, S., Wiley, B. J., Cang, H., Cobb, M. J., Li, Z.-Y., Au, L., Kimmey, M. B., Li, X. and Xia, Y., 2005, Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents, Nanolett. 5:473–377.

    CAS  Google Scholar 

  • Chi, Y., Canteenwala, T., El-ourly, M. E., Akari, Y., Pritzker, K., Ito, O., Wilson, B. C. and Chiang, L. Y., 2006, Efficiency of singlet oxygen production from self-assembled nanospheres of molecular micelle-like photosensitizers FC4S. J. Med. Chem., in press.

    Google Scholar 

  • Chomas, J. E., Pollard, R. E., Sadlowski, A. R., Griffey, S. M., Wisner, E. R. and Ferrara, K. W., 2003, Contrast-enhanced US of microcirculation of superficially implanted tumors in rats, Radiology 229:439–446.

    Article  Google Scholar 

  • Copland, J. A. Eghtedari, M., Popov, V. L., Kotov, N., Mamedova, M, Motamedi, M. and Oraevsky, A.A., 2004, Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography, Mol. Imag. Biol. 6:341–349.

    Article  Google Scholar 

  • DaCosta, R. A., Wilson, B. C. and Marcon, N. E., 2002, New optical technologies for earlier endoscopic diagnosis of premalignant gastrointestinal lesions, J. Gastroenterol. Hepatol. 17:S85–104.

    Article  Google Scholar 

  • DaCosta, R. A., Wilson, B. C. and Marcon, N. E., 2003, Photodiagnostic techniques for the endsoscopic detection of premalignant gastrointestinal lesions, Digest. Endosc. 15:153–173.

    Article  Google Scholar 

  • Farokhzad, O. C., Jon, S., Khademhosseini, A., Tran, T.-N., LaVan, D. A. and Langer, R, 2004, Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells, Cancer Res. 64:7668–7672.

    Article  CAS  Google Scholar 

  • Ferrari, M., 2005, Cancer nanotechnology: opportunities and challenges, Nature Reviews- Cancer 5:161–171.

    Article  CAS  Google Scholar 

  • Gao, X. and Nie, S., 2003, Molecular profiling of single cells and tissue specimens with quantum dots, Trends Biotechol. 21:371–373, 2003. (review)

    Article  CAS  Google Scholar 

  • Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K. and Xie, S., 2004, In vivo cancer targeting and imaging with semiconductor quantum dots, Nature Biotech 22:969–976.

    Article  CAS  Google Scholar 

  • Gibson, A. P., Hebden., J. C. and Arridge, S. R., 2005, Recent advances in diffuse optical imaging, Phys. Med. Biol. 50:R1–43.

    Article  CAS  Google Scholar 

  • Hainfeld, J. F., Slatkin, D. N. and Smilowitz, H. M., 2004, The use of gold nanoparticles to enhance radiotherapy in mice, Phys. Med. Biol. 49:N309–315.

    Article  CAS  Google Scholar 

  • Harisinghani, M. G., Barentsz, J., Hahn, P. F., Deserno, W. M., Tabatabaei, S., Hulsbergen van de Kaa, C., de la Rosette, J. and Weissleder, R., 2003, Non-invasive detection of clinically occult lymph-node metastases in prostate cancer, New Eng. J. Med. 248:2491–2499.

    Article  Google Scholar 

  • Hawrysz, D. J. and Sevick-Muraca, E. M., 2000, Developments towards diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents, Neoplasia 2:388–417.

    Article  CAS  Google Scholar 

  • Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., Hazle, J. D., Halas, N. J. and West, J. L., 2003, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Nat. Acad. Sci. 100:13549–13554.

    Article  CAS  Google Scholar 

  • Hoet, P. H. M., Bruske-Hohlfeld, I. And Salata, O. V., 2004, Nanoparticles-known and unknown health risks, J. Nanobiotechnol. 2:12,1–15.

    Article  CAS  Google Scholar 

  • Ideta, R., Taska, S., Jang, W.-D., Nishiyama, N., Zhang, G.-D., Harada, A., Yanagi, Y., Tamaki, Y., Aida, T. and Kataoka, K, 2005, Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer, Nanolett. 5:2426–2431.

    CAS  Google Scholar 

  • Ito, A., Shinkai, M., Honda, H. and Kobayashi, T., 2005, Medical application of functionalized magnetic nanoparticles, J. Biosci. Bioeng. 100:1–11.

    Article  CAS  Google Scholar 

  • Jaffar, F. A. and Weissleder, R., 2005, Molecular imaging in the clinical arena, J. Am. Med. Assoc. 293:855–862.

    Article  Google Scholar 

  • Jain, K. K., 2005, Nanotechnology-based drug delivery for cancer, and editorial Targeted drug delivery for cancer, Tech. Cancer Res. Treat. 4:407–416 and 311–313.

    CAS  Google Scholar 

  • Jain, T. K., Morales, M.A., Sahoo, S.K., Leslie-Pelecky, D.L. and Labhasetwar, V., 2005, Iron oxide nanoparticles for sustained delivery of anticancer agents, Mol. Pharm. 2:194–205.

    Article  CAS  Google Scholar 

  • Jiang, W., Papa, E., Fischer, H., Mardyani, S. and Chan, W. C. W., 2004, Semiconductor quantum dots as contrast agents for whole animal imaging, Trends Biotechnol. 22:607–609.

    Article  CAS  Google Scholar 

  • Karotki, A., Khurana, M., Lepock, J. R. and Wilson, B. C., 2006, Simultaneous two-photon excitation of Photofrin and its application to photodynamic therapy, Photochem. Photobiol., in press.

    Google Scholar 

  • Kelty, C. J., Brown, N. J., reed, M. W. and Ackroyd, R., 2002, the use of 5-aminolaevulinic acid as a photosensitizer in photodynamic therapy and photodiagnosis, Photochem. Photobiol. Sci. 1:158–168.

    Article  CAS  Google Scholar 

  • Kim, S.-W., Zimmer, J. P., Ohnishi, S., Tracy, J. B., Frangioni, J. B. and Bawendi, M. G, 2005, Engineering InAsxP1-x/InP/ZnSe III-V alloyed core/shell quantum dots for the near infrared, J. Am. Chem. Soc. 127:10526–10532.

    Article  CAS  Google Scholar 

  • Kovalev, D. and Fujii, M., 2005, Silicon nanocrystals:Photosensitizers for oxygen molecules, Adv. Mater. 17:2531–2544.

    Article  CAS  Google Scholar 

  • Lam, S., MacAulay, C., leRichie, J. C. and Palcic, B., 2000, Detection and localization of early lung cancer by fluorescence bronchoscopy, Cancer 89:2468–2473.

    Article  CAS  Google Scholar 

  • Larina, M.S., Evers, B.M., Ashitkov,T. V., Bartels,C., Larin, K. V. and Esenaliev, R. O., 2005, Enhancement of Drug Delivery in Tumors by Using Interaction of Nanoparticles with Ultrasound Radiation, Tech. Cancer Res. Treat. 2: 217–226.

    Google Scholar 

  • Larson, D. R., Zipfel, W. R., Williams, R. M., Clark, S. W., Bruchez, M. P., Wise, F. W. and Webb, W.W., 2003, Water-soluble quantum dots for multiphoton fluorescence imaging in vivo, Science 300:1434–1436.

    Article  CAS  Google Scholar 

  • Lee, T. M., Oldenberg, A.L., Sitafalwalla, S., Marks, D.L., Luo, W., Toublan, F.J., Suslick, K.S. and Boppart, S.A., 2003, Engineered microsphere contrast agents for optical coherence tomography, Opt. Lett. 28:1546–1548.

    CAS  Google Scholar 

  • Li, L., Wartchow, C. A., Danthi, N., Shen, Z., Dechene, N., Pease, J., Choi, H. S., Doede, T., Chu, P., Ning, S., Lee, D. Y., Bednarski, M. D. and Knox, S. J., 2004, A novel antiangiogenesis therapy using an integrin antagonist of anti-Flk-1 antibody coated 90Ylabelled nanoparticles, Int. J. Rad. Oncol. Biol. Phys. 58, 1215–1227.

    CAS  Google Scholar 

  • Loo, C. Lin, A. Hirsch, L., Lee, M.-H., Barton, J., Halas, N., West, J. and Drezek, R., 2004, Nanoshell-enabled, photonics-based imaging and therapy of cancer, Tech. Cancer Res. Treat. 3:33–40.

    CAS  Google Scholar 

  • Lu. Z., Yeh, T.-K., Tsai, M., Au, J., L.-S. and Wientjes, M. G., 2004, Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy, Clin. Cancer Res. 10:7677–7684.

    Article  CAS  Google Scholar 

  • Malsch, N. H. (ed.), 2005, Biomedical Nanotechnology, CRC/Taylor & Francis, NY.

    Google Scholar 

  • Martin, M. E., Wabuyele, B., Pahnjepour, M., Overholt, B., DeNovo, R., Kennel, S., Cunningham, G. and Vo-Dinh, T., 2006, An AOTF-based dual-modality hyperspectral imaging system (DMHIS) capable of simultaneous fluorescence and reflectance imaging, Med. Eng. Phys. 28:149–155.

    Article  Google Scholar 

  • McArthy, J. R., Perez, J. M., Brückner, C. and Weissleder, R., 2005, Polymeric nanoparticle preparation that eradicates tumors, Nanolett. 12:2552–2556.

    Google Scholar 

  • Michalet, X., Pinaud, F.F., Bentolinla, L. A., Tsay, J.M., Doose, S., Li, J. J., Sundaresan, G, Wu, A. M., Gambhir, S. S. and Weiss, S., 2005, Quantum dots for live cells, in vivo imaging and diagnostics, Science 307:538–544.

    Article  CAS  Google Scholar 

  • Mitra, A. Mulholland, J., Nan, A., McNeill, E., Ghandehari, H. and Line, B. R., 2005, Targeting tumor angiogenic vasculature using polymer-RGD conjugates, J. Control. Release 102:192–202.

    Article  CAS  Google Scholar 

  • Moghimi, S. M., Hunter, A. C. and Murray, J. C., 2005, Nanomedicine- current status and future prospects, FASEB J. 19:31–330.

    Article  CAS  Google Scholar 

  • Neuwelt, E. A., Varallyay, P., Bago, A. G., Muldoon, L. L., Nesbit, G and Nixon, R., 2004, Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumors, Neuropath. Appl. Neurobio. 30:456–471.

    Article  CAS  Google Scholar 

  • Oldenberg, A.L., Toublan, F. J.-J., Suslick, K. S., Wei, A. and Boppart, S. A., 2005, Magnetomotive contrast for in vivo optical coherence tomography, Opt. Expr. 13:6597–6614.

    Article  Google Scholar 

  • Paciotti, G. F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLauglin, R. E. and Tamarkin, L., 2004, Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery, Drug Deliv. 11:160–183.

    Article  CAS  Google Scholar 

  • Panchapakesan, B., Lu, S., Sivakumar, K. Cesarone, G. and Wickstrom, E., 2005, Singlewall carbon nanotube nanobomb agents for killing breast cancer celle, Nanobiotech. 1:2:133.

    Article  CAS  Google Scholar 

  • Patrice, T. (ed.), 2003, Photodynamic Therapy, Royal Soc Chemistry, UK.

    Google Scholar 

  • Pitsillides, C.M., Joe, E. K., Wei, X., Anderson R. R. and Lin, C. P., 2003, Selective cell targeting with light-absorbing microparticles and nanoparticles, Biophys. J. 84:4023–4032.

    Article  CAS  Google Scholar 

  • Prasad. P., 2004, Nanophotonics, Wiley, N.Y.

    Book  Google Scholar 

  • Prow, T. W., Salazar, T. H., Rose, W. A., Smith, J. N., Reece, L., Fontenot, A. A., Wang, N. A., Lloyd, R. S., and Leary, J. S., 2004, Nanomedicine- nanoparticles, molecular biosensors, and targeted gene/ drug delivery for combined single-cell diagnostics and therapeutics, Proc. Soc. Photo-Opt. Instr. Eng. 5318:1–11.

    CAS  Google Scholar 

  • Puliafito, C. A. (ed.), 1996, Laser Surgery and Medicine: Principles and Practice, J. Wiley, NJ, USA.

    Google Scholar 

  • Roy, I., Mitra, S., Maitra, A. and Mozumdar, S., 2003, calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery, Int. J. Pharm. 250:25–33.

    Article  CAS  Google Scholar 

  • Roy, I., Ohulchanskyy, T. Y., Pudavar, H. E., Bergey, E. J., Oseroff, A. R., Morgan, J., Dougherty, T. J. and Prasad, P. N., 2003, Ceramic-based nanoparticles entrapping water insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy, J. Am. Chem. Soc. 125:7860–7865.

    Article  CAS  Google Scholar 

  • Salata, O. V., 2004, Applications of nanoparticles in biology and medicine, J. Nanobiotechnol. 2:3.

    Article  Google Scholar 

  • Schmieder, A. H., Winter, P. M., Caruthers, S. D., Harris, T. D., Williams, T. A., Allen, J. S., Lacy, E. K., Zhang, H., Scott, M. J., Hu, G., Robertson, J. D., Wickline, S. A. and Lanza, G. M., 2005, Molecular MR imaging of melanoma angiogenesis with 3- targeted paramagnetic nanoparticles, Mag. Res. Med. 53: 621–627.

    Article  CAS  Google Scholar 

  • Shikata, F., Tokumitsu, H., Ichikawa, H. and Fukumori, Y., 2002, In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron capture therapy of cancer, Eur. J. Pharmaceut. Biopharmaceut. 53:57–63.

    Article  CAS  Google Scholar 

  • Sitharaman, B., Kissel, K. R., Hartman, K. B., Tran, L. A., Baikalov, A., Rusakova, I., Sun, Y., Khant, H. A., Ludtke, S. J., Chiu, W., Laus, S., Toth, E., Helm, L., Merbach, A. E. and Wilson, L. J., 2005, Superparamagmetic gadonanotubes are high-performance MRI contrast agents, Chem. Commun. (Camb.) 31: 3915–3917.

    Article  CAS  Google Scholar 

  • Soltesz, E. G., Kim, S., Laurence, R. G., De Grand, A.M., Parungo, C. P., Dor, D. M., Cohn, L. H., Bawendi, M. G. and Frangioni, J. V., 2005, Intraoperative sentinel lymph node mapping of the lung using near-infrared quantum dots, Ann. Thorac. Surg. 79:269–277.

    Article  Google Scholar 

  • Spangler, C. W., Meg, F., Gong, A., Drobizhev, M., Karotki, A. and Rebane, A., 2005, Nanophotonic ensembles for targeted multi-photon photodynamic therapy, Proc. Soc. Photo-Opt. Instr. Eng. 5331:85–92.

    Google Scholar 

  • Stummer, W., Reulen, H. J., Novotny, A., Stepp, H. and Tonn, J. C., 2003, Fluorescenceguided resections of malignant gliomas – an overview, Acta Neurochir. Suppl. 88:9–12.

    CAS  Google Scholar 

  • Tannock, I., Hill, R.P., Bristow, R. G. and Harrington, L., 2004, The Basic Science of Oncology, Pergamon Press, NY.

    Google Scholar 

  • Thomas, J. and Hawthorne, M.E., 2001, Dodeca(carbolyl)-substituted closomers: towards unimolecular nanoparticles as delivery vehicles for BNCT, Chem Commun. (Camb.) 18:1884–1185.

    Article  Google Scholar 

  • Tytgat, G. N. J., Yano, H., Iishi, H., Tatsuta, M., Ogihara, T., Watanabe, H., Sato, N., Marcon, N., Wilson, B. C. and Cline, R., 2001, Autofluorescence endoscopy: Feasibility of detection of GI neoplasms unapparent to white light endoscopy with an evolving technology, Gastrointest. Endosc. 53:642–650.

    Article  Google Scholar 

  • Veiseh, O., Sun, C., Gunn, J., Kohler, N., Gabikian, P., Lee, D., Bhattarai, N., Ellenbogen, R., Sze, R., Hallahan, A., Olsen, J. and Zhang, M., 2005, Optical and MRI multifunctional nanoprobe for targeting giomas, Nanolett. 5:1003–1008.

    CAS  Google Scholar 

  • Yan, F. and Kopelman, R. 2003, The embedding of meta-tetra(hdroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties, Photochem. Photobiol. 78:587–591.

    Article  CAS  Google Scholar 

  • Yang, V., Muller, P. J., Herman, P. and Wilson, B. C., 2003, A multispectral fluorescence imaging system: Design and initial clinical tests in intra-operative Photofrinphotodynamic therapy of brain tumors, Lasers Surg. Med. 32:224–232.

    Article  Google Scholar 

  • Yang, V. X. D, Tang, S. J., Gordon, M. L., Qi, B., Gardinar, G., Kortan, P., Haber, G. B., Kandel, G., Vitkin, I. A., Wilson, B. C. and Marcon, N. E., 2005, Endoscopic Doppler optical coherence tomography in the human GI tract: Initial experience, Gastrointest. Endosc. 61: 879–890.

    Article  Google Scholar 

  • Yinghuai, Z., Peng, A. T., Carpenter, K., Maguire, J. A., Hosmane, N. S., Takagaki, M., 2005, Substituted carborane-appended water-soluble single-wall carbon nanotubes: New approach to boron neutron capture therapy drug delivery, J. Am. Chem. Soc. 127:9875–9880.

    Article  CAS  Google Scholar 

  • Zheng, G., Chen J., Li, H. and Glickson, J. D., 2005a, Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents, Proc. Nat. Acad. Sci. 102:17757–17762.

    Article  CAS  Google Scholar 

  • Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. and Lieber, C. M., 2005b, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nature Biotechnol. 23:1294–1301.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

WILSON, B.C. (2006). PHOTONIC AND NON-PHOTONIC BASED NANOPARTICLES IN CANCER IMAGING AND THERAPEUTICS. In: Dubowski, J.J., Tanev, S. (eds) Photon-based Nanoscience and Nanobiotechnology. NATO Science Series, vol 239. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5523-2_6

Download citation

Publish with us

Policies and ethics