Skip to main content

FINITE-DIFFERENCE TIME-DOMAIN MODELING OF LIGHT SCATTERING FROM BIOLOGICAL CELLS CONTAINING GOLD NANOPARTICLES

  • Conference paper
Photon-based Nanoscience and Nanobiotechnology

Part of the book series: NATO Science Series ((NAII,volume 239))

  • 1177 Accesses

Abstract

The Finite-Difference Time-Domain (FDTD) modeling technique is applied to study the effect of the cell membrane thickness in optical immersion enhanced phase contrast microscope imaging. The FDTD approach is also applied for studying the implementation of the optical immersion technique for the visualization of single and multiple gold nanoparticles in biological cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. N. Prasad, Bioimaging: principles and techniques, Chap. 7 in Introduction to biophotonics, John Wiley & Sons, New Jersey (2003), pp. 203–249.

    Book  Google Scholar 

  2. V. V. Tuchin, Introduction to optical biomedical diagnostics, in Handbook of optical biomedical diagnostics, Valery V. Tuchin, Editor, SPIE Press, Bellingham, Washington (2002), pp. 1–25.

    Google Scholar 

  3. F. M. Kahnert, Numerical methods in electromagnetic scattering theory, Journal of Quantitative Spectroscopy and Radiative Transfer 73 (2003), pp. 775–824.

    Article  CAS  Google Scholar 

  4. A. Dunn, C. Smithpeter, A. J. Welch and R. Richards-Kortum, Light scattering from cells, OSA Technical Digest – Biomedical Optical Spectroscopy and Diagnostics, Washington, Optical Society of America (1996), pp. 50–52.

    Google Scholar 

  5. A. Dunn, and R. Richards-Kortum, Three-dimensional computation of light scattering from cells, IEEE Journal of Selected Topics in Quantum Electronics 2 (1996), pp. 898–894.

    Article  CAS  Google Scholar 

  6. A. Dunn, Light Scattering Properties of Cells, PhD Dissertation, Biomedical Engineering, University of Texas at Austin, Austin TX (1997): http://www.nmr.mgh.harvard.edu/7Eadunn/papers/dissertation/index.html

    Google Scholar 

  7. A. Dunn, C. Smithpeter, A. J. Welch and R. Richards-Kortum, Finite-difference time domain simulation of light scattering from single cells, Journal of Biomedical Optics 2 (1997), pp. 262–266.

    Article  Google Scholar 

  8. R. Drezek, A. Dunn and R. Richards-Kortum, Light scattering from cells: finitedifference time-domain simulations and goniometric measurements, Applied Optics 38 (1999), pp. 3651–3661.

    CAS  Google Scholar 

  9. R. Drezek, A. Dunn and R. Richards-Kortum, A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges, Optics Express 6 (2000), pp. 147–157.

    Article  CAS  Google Scholar 

  10. A. V. Myakov, A. M. Sergeev, L.S. Dolin, R. Richards-Kortum, Finite-dfference time domain simulation of light scattering from multiple cells, Technical Digest, Conference on Lasers and Electro-Optics (CLEO) (1999), pp. 81–82.

    Google Scholar 

  11. T. Tanifuji, N. Chiba and M. Hijikata, FDTD (finite difference time domain) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography, Technical Digest, The 4th Pacific RIM Conference on Lasers and Electro-Optics 1 (2001), pp. I-376–I-377.

    Google Scholar 

  12. T. Tanifuji and M. Hijikata, Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography, IEEE Transactions on medical imaging 21, No. 2, (2002), pp. 181–184.

    Article  Google Scholar 

  13. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, R. R. Richards-Kortum, Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture, Journal of Biomedical Optics 8 (2003), pp. 7–16.

    Article  Google Scholar 

  14. D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, Light scattering from normal and dysplastic cervical cells at different epithelial depths: finitedifference time domain modeling with a perfectly matched layer boundary condition, Journal of Biomedical Optics 8 (2003), pp. 484–494.

    Article  Google Scholar 

  15. S. Tanev, W. Sun, R. Zhang and A. Ridsdale, The FDTD approach applied to light scattering from single biological cells, Proceedings of SPIE, Vol. 5474, Saratov Fall Meeting 2003, Optical Technologies in Biophysics and Medicine V (2004), pp. 162–168.

    Article  Google Scholar 

  16. S. Tanev, W. Sun, R. Zhang and A. Ridsdale, Simulation tools solve light-scattering problems from biological cells, Laser Focus World (January 2004), pp. 67–70.

    Google Scholar 

  17. S. Tanev, W. Sun, N. Loeb, P. Paddon and V. V. Tuchin, The Finite-Difference Time-Domain Method in the Biosciences: Modelling of Light Scattering by Biological Cells in Absorptive and Controlled Extra-cellular Media, in Advances in Biophotonics, Ed. B. C. Wilson, V. V. Tuchin and S. Tanev, NATO Science Series I, vol. 369, IOS Press, Amsterdam, 2005, pp. 45–78.

    Google Scholar 

  18. G. Mie, Beigrade zur optic truber medien, speziell kolloidaler metallsungen, Ann. Phys. (Leipzig) 25 (1908), pp. 377–455.

    CAS  Google Scholar 

  19. W. Sun, N. G. Loeb and Q. Fu, Light scattering by coated sphere immersed in absorbing medium: a comparison between the FDTD and analytic solutions, Journal of Quantitative Spectroscopy & Radiative Transfer 83 (2004), pp. 483–492.

    Article  CAS  Google Scholar 

  20. R. Barer, K. F. A. Ross, and S. Tkaczyk, Refractometry of living cells, Nature 171 (1953), pp. 720–724.

    Article  CAS  Google Scholar 

  21. R. Barer and S. Joseph, Refractometry of living cells, Q. J. Microsc. Sci. 95 (1954), pp. 399–406.

    CAS  Google Scholar 

  22. B. A. Fikhman, Microbiological Refractometry, Medicine, Moscow (1967).

    Google Scholar 

  23. H. Liu, B. Beauvoit, M. Kimura, and B. Chance, Dependence of tissue optical properties on solute – induced changes in refractive index and osmolarity, Journal of Biomedical Optics 1 (1996), pp. 200–211.

    Article  CAS  Google Scholar 

  24. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, Light propagation in tissues with controlled optical properties, Journal of Biomedical Optics 2 (1997), pp. 401–417.

    Article  Google Scholar 

  25. D. A. Zimnyakov, V. V. Tuchin, and A. A. Mishin, Spatial speckle correlometry in applications to tissue structure monitoring, Applied Optics 36 (1997), pp. 5594–5607.

    Article  CAS  Google Scholar 

  26. G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander III, and A. J. Welch, Use of an agent to reduce scattering in skin, Laser Surg. Med. 24 (1999), pp. 133–141.

    Article  CAS  Google Scholar 

  27. V. V. Tuchin, Control of tissue and blood optical properties, in Advances in Biophotonics, Ed. B. C. Wilson, V. V. Tuchin and S. Tanev, NATO Science Series I, vol. 369, IOS Press, Amsterdam, 2005, pp. 79–122.

    Google Scholar 

  28. W. Sun, N. G. Loeb, S. Tanev, and G. Videen, Finite-difference time-domain solution of light scattering by an infinite dielectric column immersed in an absorbing medium, Applied Optics 44, No. 10 (2005), pp. 1977–1983.

    Article  Google Scholar 

  29. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, Artech House, Boston, 2000.

    Google Scholar 

  30. The FDTD Solutionsâ„¢ was developed by Lumerical Solutions Inc., Vancouver, BC, Canada: www.lumerical.com

    Google Scholar 

  31. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan and R. Richards-Kortum, Real-time vital optical imaging of precancer using anti-epidermal growth

    Google Scholar 

  32. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer, Nano Letters 5, No. 5 (2005), pp. 829–834.

    Article  CAS  Google Scholar 

  33. N. G. Khlebtsov, A. G. Melnikov, L. A. Dykman and V. A. Bogatyrev, Optical properties and biomedical applications of nanostructures based on gold and silver bioconjugates, in Photopolarimetry in Remote Sensing, G. Videen, Ya. S. Yatskiv and M. I. Mishchenko (Eds.), NATO Science Series, II. Mathematics, Physics, and Chemistry, vol. 161, Kluwer, Dordrecht, 2004, pp. 265–308.

    Google Scholar 

  34. Vladimir P. Zharov, Jin-Woo Kim, David T. Curiel, Maaike Everts, Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy, Review article in Nanomedicine: Nanotechnology, Biology, and Medicine 1 (2005), pp. 326–345.

    CAS  Google Scholar 

  35. Vladimir P. Zharov, Kelly E. Mercer,y Elena N. Galitovskaya, and Mark S. Smeltzer, Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles, Biophysical Journal 90 (2006), pp. 619–627.

    Article  CAS  Google Scholar 

  36. P. B. Johnson and R. W. Christy, Optical constants of noble metals, Physical Review B6 (1972), pp. 4370–4379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

TANEV, S., TUCHIN, V.V., PADDON, P. (2006). FINITE-DIFFERENCE TIME-DOMAIN MODELING OF LIGHT SCATTERING FROM BIOLOGICAL CELLS CONTAINING GOLD NANOPARTICLES. In: Dubowski, J.J., Tanev, S. (eds) Photon-based Nanoscience and Nanobiotechnology. NATO Science Series, vol 239. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5523-2_5

Download citation

Publish with us

Policies and ethics