Advertisement

FROM LABORATORY EXPERIMENTS TO LARGE SCALE APPLICATION – AN EXAMPLE OF THE PHYTOREMEDIATION OF RADIONUCLIDES

  • PETR SOUDEK
  • ŠÁRKA VALENOVÁ
  • DAGMAR BENEŠOVÁ
  • TOMÁŠ VANĚK
Conference paper
Part of the NATO Science Series: IV: Earth and Environmental Sciences book series (NAIV, volume 75)

Abstract

Phytoremediation is widely viewed as an environmentally sound alternative to the destructive physical remediation methods currently practised. Plants have many endogenous genetic, biochemical, and physiological properties which make them ideal agents for soil and water remediation. Significant progress has been made in recent years in developing native or genetically modified plants for the remediation of contaminated environments. Because elements are chemically stable, phytoremediation strategies for radionuclide and heavy metal pollutants focus on above-ground hyper-accumulation. Soil contaminated with radionuclides pose a long-term radiation hazard to human health through exposure mainly via the food chain.

Keywords

Chernobyl Accident Helianthus Annuus 226Ra Activity Pteridium Aquilinum Internodal Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arapis, G., Petrayev, E., Shagalova, E., Zhukova, O., Sokolik, G., and Ivanov, T., 1997, Effective migration velocity of 137Cs and 90Sr as a function of the type of soils in Belarus, J. Environ. Radioac. 34:171–185.CrossRefGoogle Scholar
  2. Baker, A. J. M., and Brooks, R. R., 1989, Terrestrial higher plants which hyperaccumulate metallic elements - A review of their distribution, ecology and phytochemistry, Biorecovery 1:81–126.Google Scholar
  3. Belli, M., 1998, Long - Term Dynamics of Radionuclides in Semi - Natural Environments: Derivation of Parameters and Modeling., ed. M. Belli, Agenzia Nazionale per la Protezione dell’Ambiente, Rome.Google Scholar
  4. Bennett, B., Bouville, A., Hall, P., Savkin, M., and Storm, H., 2000, Chernobyl accident: exposures and effects. In Proceeding of 10th IRPA International Congress, Hiroshima, Japan (14.-19. May 2000), T-12–1 (www.irpa.net/irpa10/cdrom/00713.pdf).Google Scholar
  5. Broadley, M. R., Willey, N.J., and Mead, A., 1999, A method to assess taxonomic variation in shoot caesium concentration among flowering plants. Environ. Pollut. 106:341–349.CrossRefGoogle Scholar
  6. Bruneton, J., 1995, Pharmacognosy, phytochemistry, medicinal plants. Intercept Ltd, Hampshire, England.Google Scholar
  7. Bunzl, K., Schimmack, W., Belli, M., and Riccardi, M., 1997, Sequential extraction of fallout radiocesium from the soil: Small scale and large-scale spatial variability. J. Radioanal. Nucl. Chem. 226:47–53.CrossRefGoogle Scholar
  8. Buysse, J., Van de Brande, K., and Meckx, R., 1995, The distribution of radiocaesium and potassium in spinach plants grown at different shoot temperatures. J. Plant Physiol. 146:263–267.Google Scholar
  9. Cline, J.F., and Hungate, F.P., 1960, Accumulation of potassium, caesium and rubidium in bean plants grown in nutrient solutions. Plant Physiol. 35:826–829.Google Scholar
  10. Cornish, J. E., Huddleston, G. J., and Levine, R. S., 1995, Phytoremediation of soils and water contaminated with toxic elements and radionuclides. In 7 ACS Special Symposium: Energing Technologies in Hazardous Waste Management, ed D.W. Tedder, American Chemical Society, Washington, DC, pp. 1352–1414.Google Scholar
  11. Dushenkov, S., Mikheev, A., Prokhnevsky, A., Ruchko, M., and Sorochinsky, B., 1999, Phytoremediation of radiocaesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ. Sci. Technol. 33:469–475.CrossRefGoogle Scholar
  12. Entry, J.A., and Emmingham, W.H., 1995, Sequestration of 137Cs and 90Sr from soil by seedlings of Eucalyptus tereticornis. Can. J. For. Res. 25:1044–1047.Google Scholar
  13. EU publication, 1998, Atlas of caesium deposition on Europe after the Chernobyl accident, EUR 16733, Luxembourg.Google Scholar
  14. Gauthier-Lafaye, F., 2002, 2 billion year old natural analogs for nuclear waste disposal: the natural nuclear fission reactors in Gabon (Africa). C. R. Physiquée 3:839–849.CrossRefGoogle Scholar
  15. International Atomic Energy, 1989, Clean up of large areas contaminated as a result of a nuclear accident. Technical Reports Series No. 300.Google Scholar
  16. Lasat, M.M., Fuhrmann, M., Ebbs, S.D., Cornish, J.E., and Kochian, L.V., 1998, Phytoremediation of radiocesium-contaminated soil: Evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J. Environ. Qual. 27:165–169.CrossRefGoogle Scholar
  17. Mengel, K., and Kirkby, E.A., 1978, Principles of plant nutrition. Ed. Int. Potash Institute.Google Scholar
  18. Menzel, R.G., Heald, W.R., 1955, Distribution of potassium, rubidium, caesium, calcium and strontium within plants grown in nutrient solutions. Soil Sci. 78(5):287–293.CrossRefGoogle Scholar
  19. Muramatsu, Y., Yoshida, S., and Bannai, T., 1995, “Tracer experiments on the behaviour of radioiodine in the soil-plant-atmosphere system”, J. Radioanal. Nucl. Chem. - Articles 194(2), 303–310.CrossRefGoogle Scholar
  20. Nepovím, A., Hebner, A., Soudek, P., Gerth, A., Thomas, H., Smrček, S., and Vaněk, T., 2005, Degradation of 2,4,6-trinitrotoluene by selected helophytes., Chemosphere 60:1454–1461.CrossRefGoogle Scholar
  21. Nisbet, A. F., 1993, Effect of soil - based countermeasures on solid - liquid equilibria in agriculture soils contaminated with radiocaesium and radiostrontium. Sci. Total Environ. 137:99–118.CrossRefGoogle Scholar
  22. Nishita, H., Steen, A.J., and Larson, K.H., 1958, Release of strontium-90 and cesium-137 from vina loam upon prolonged cropping. Soil Sci. 86:195–201.CrossRefGoogle Scholar
  23. PhytoDec, 2004, A Decision Support System to quantify cost/benefit relationships of the use of vegetation in the management of heavy metal polluted soils and dredged sediments. (http://www.alterra-research.nl/pls/portal30/docs/folder/phytodec/fading_out.htm).Google Scholar
  24. Procházka, S., Macháčková, I., Krekule, J., and Šebánek, J., 1998, Plant physiology. Academia Praha, pp. 484. (in czech).Google Scholar
  25. Roca, M.C., and Vallejo, V.R., 1995, Effect of soil potassium and calcium on caesium and strontium uptake by plant roots. J. Environ. Radioac. 28:141–159.CrossRefGoogle Scholar
  26. Sadolko, I., Arapis, G., and Davydchuk, V., 1995, Migration velocity of 137 Cs in the soils of Chernobyl area. Journal of Radioecology 3, No. 2, 7–13.Google Scholar
  27. Sens, C., Scheidemann, P., Klunk, A., and Werner D., 1998, Distribution of 14 C -TNT and derivatives in different biochemical compartments of Phaseolus vulgaris. Environ. Sci. Pollut. Res. 4:202–208.CrossRefGoogle Scholar
  28. Sens, C., Scheidemann, P., and Werner, D., 1999, The distribution of 14 C-TNT in different biochemical compartments of the monocotyledonous Triticum aestivum. Environ. Pollut. 104:113–119.CrossRefGoogle Scholar
  29. Shaw, G., 1993, Blockade by fertilisers of caesium and strontium uptake into crops: effects on the root uptake process. Sci. Total Environ. 137:119–133.CrossRefGoogle Scholar
  30. Smolders, E., and Shaw, G., 1995,. Changes in radiocaesium uptake and distribution in wheat during plant development: a solution culture study. Plant Soil 176:1–6.CrossRefGoogle Scholar
  31. Soudek, P., PetřÍk, P., Vágner, M., Podracká, E., Tykva, R., and Vaněk, T., 2006a, Botanical survey and screening of plant species on contaminated soil of uranium waste depot., European Journal of Soil Biology (in press).Google Scholar
  32. Soudek, P., Podracká, E., Vágner, M., Vaněk, T., PetřÍk, P., and Tykva R., 2004a, 226 Ra uptake from soils into different plant species. J. Radioanal. Nucl. Chem. 262:187–189.CrossRefGoogle Scholar
  33. Soudek, P., Tykva, R., and Vaněk, T., 2004b, Laboratory analyses of 137 Cs uptake by sunflower, reed and poplar. Chemosphere 55:1081–1087.CrossRefGoogle Scholar
  34. Soudek, P., Tykva, R., Vaňková, R., and Vaněk, T., 2006b, Accumulation of radioiodine from aqueous solution by hydroponically cultivated sunflower (Helianthus annuus L.). Environ. Exp. Bot. 57:220–225.CrossRefGoogle Scholar
  35. Soudek, P., Valenová, Š., Benešová, D., Tykva, R., and Vaněk, T., 2006c, Transfer of 226 Ra nuclide from soil to plants during the vegetation period. Journal of Environmental Radioactivity (submited).Google Scholar
  36. Soudek, P., Valenová, Š., Vanříková, Z., and Vaněk, T., 2006d, Study of 137Cs and 90Sr uptake by sunflower cultivated under hydroponic condition. Journal of Environmental Radioactivity 88:236–250.CrossRefGoogle Scholar
  37. Soudek, P., Vaněk, T., and Valenová, Š., 2005b, Method of removal of uranium and its decay series products from water. Patent application.Google Scholar
  38. Tyson, M.J., Sheffield, E., and Callaghan, T.V., 1999, Uptake, allocation, accumulation and ecological implications of 85Sr in bracken (Pteridium aquilinum L. Kuhn). J. Environ. Radioac. 46:15–25.CrossRefGoogle Scholar
  39. U.S. Department of Energy Office of Environmental Management (DOEEM), 1998. Characteristics of important radionuclides. (http://web.em.doe.gov/idb97/tabb1.html).Google Scholar
  40. Vaněk, T., Soudek, P., and Tykva, R., 2001. Study of radiophytoremediation, Minerva Biotecnol. 13:177–121.Google Scholar
  41. Velasco, R. H., Toso, J. P., Belli, M., and Sansone, U., 1997, Radiocesium in the northeastern part of Italy after the Chernobyl accident: Vertical soil transport and soil-toplant transfer. J. Environ. Radioac. 37:73–83.CrossRefGoogle Scholar
  42. von Fircks, Y., Rosén, K., and Sennerby-Forsse, L., 2002, Uptake and distribution of 137 Cs and 90 Sr in Salix viminalis plants. J. Environ. Radioac. 63:1–14.CrossRefGoogle Scholar
  43. Watt, N.R., Willey, N.J., Hall, S.C., and Cobb, A., 2002,. Phytoextraction of 137Cs: the effect of soil 137Cs concentration on 137Cs uptake by Beta vulgaris. Acta Biotechnol. 22:183–188.CrossRefGoogle Scholar
  44. White, P.J., Swarup, K., Escobar-Gutierrez, A.J., Bowen, H.C., Willey, N.J., and Broadley, M.R., 2002, Selecting plants to minimise radiocaesium in the food chain. Plant Soil 249:177–186.CrossRefGoogle Scholar
  45. Willey, N., Hall, S., and Mudigant, A., 2001, Assessing the potential of phytoremediation at a site in the U.K. contaminated with 137 Cs. Int. J. Phytorem. 3:321–334.CrossRefGoogle Scholar
  46. Wolterbeek, H. T., and van der Meer, A. J. G. M., 1996, A sensitive and quantitative biosensing method for the determination of γ - ray emitting radionuclides in surface water. J. Environ. Radioac. 33:237–254.CrossRefGoogle Scholar
  47. Zhu, Y.G., Shaw, G., Nisbet, A.F., and Willkins, B.T., 1999, Effect of external potassium supply on compartmentation and flux characteristics of radiocaesium in intact spring wheat roots. Ann. Bot. 84:639–644.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • PETR SOUDEK
    • 1
  • ŠÁRKA VALENOVÁ
    • 1
  • DAGMAR BENEŠOVÁ
    • 1
  • TOMÁŠ VANĚK
    • 1
  1. 1.Department of Plant Tissue Cultures, Institute of Organic Chemistry and BiochemistryCzech Academy of SciencePrague 6Czech Republic

Personalised recommendations