Skip to main content

NANOSTRUCTURED CARBON MATERIALS BASED ON IR-PYROLIZED POLYACRYLONITRILE

  • Conference paper
Hydrogen Materials Science and Chemistry of Carbon Nanomaterials

Abstract

IR pyrolysis of PAN and PAN based composites yields ordered graphitelike structure as well as several carbon nanostructures. Metal-carbon nanocomposites, in which the nanosized metal particles were introduced into the structure of carbon matrix in the course of IR pyrolysis of composite-precursor on the basis of PAN and metal (Gd, Pt, Ru, Re) compounds were prepared. The carbon phase of metal-carbon nanocomposites was shown to include different types of nanostructured carbon particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Popov, V.N. (2004) Carbon nanotubes: properties and application, Mater. Sci. Eng.: R: Reports, 43, 61–102.

    Article  CAS  Google Scholar 

  2. Xu, L., Zhang, W., Yang, Q., Ding, Y., Yu, W., Qian. Y. (2005) A novel route to hollow and solid carbon spheres, Carbon 43, 1090–1092.

    Article  CAS  Google Scholar 

  3. Osawa, E. (ed.) (2002) Perspectives of fullerene nanotechnology, Kluver academic publishers, 375 p.

    Google Scholar 

  4. Senderova, O.A., Zhirnov, V.V., Brenner, D.W. (2002) Carbon nanostructures, Crit. Rev. Solid State Mater. Sci. 27, 227–356.

    Article  Google Scholar 

  5. Inagaki, M., Kaneko, K., Nishizawa, T. (2004) Nanocarbons–recent research in Japan, Carbon 42, 1401–1417.

    Article  CAS  Google Scholar 

  6. Iijima, S. (2002) Carbon nanotubes: past, present and future, Physica B 323, 1–5.

    Article  ADS  CAS  Google Scholar 

  7. Urones-Garrote, E., Avila-Brande, D., Ayape-Katcho, N., Gomez-Herrero, A., Landa-Canovas, A.R., Otero-Diaz, L.C. (2005) Amorphous carbon nanostructures from chlorination of ferrocene, Carbon 43 (5), 978–985.

    Article  CAS  Google Scholar 

  8. Xue, T.J., McKinney, M.A., Wilkie, C.A. (1997) The thermal degradation of polyacrylonitrile, Polym. Degrad. Stabil. 58, 193–202.

    Article  CAS  Google Scholar 

  9. Renschler, C.L., Sylwester, A.P., Salgado, L.V. (1989) Carbon films from polyacrylonitrile, J. Mater. Res. 40, 452–457.

    Article  ADS  Google Scholar 

  10. Usami, T., Itih, T., Ohtani, H., Tsuge, S. (1990) Structural study of polyacrylonitrile fibers during oxidative thermal degradation by pyrolysis-gas chromatography, solid state 13C Nuclear magnetic resonance and Fourier transform infrared spectroscopy, Macromolecules 23, 2460–2465.

    Article  CAS  Google Scholar 

  11. Deki, S., Nabika, H., Akamatsu, K., Mizuhata, M., Kijinami, A., Tomita, S., et.al. (2002) Fabrication and characterization of PAN-derived carbon thin films containing Au nanoparticles, Thin Solid Films 408, 59–63.

    Article  CAS  Google Scholar 

  12. Kozlov, V.V., Korolev, Yu.M., Karpacheva G.P. (1999) IR-radiation induced structural transformations in the composite based on polyacrylonitrile and fullerene C60, Polymer Science, A 41, 553–557.

    Google Scholar 

  13. Bashir, Z. (1994) Cocrystallization of solvents with polymers–the X-raydiffraction behavior of solvent-containing and solvent-free polyacrylonitrile, J.Polym.Sci., Polym.Phys. 32, 1115–1128.

    Article  CAS  Google Scholar 

  14. Tuinstra, F., Konig, J.L. (1970) Raman spectrum of graphite, J. Chem. Phys. 53, 1126–1130.

    Article  CAS  Google Scholar 

  15. Capano, M.A., McDevitt, N.T., Singh, R.K., Qian, F. (1996) Characterization of amorphous carbon thin films, J. Vac. Sci. Technol. A 14, 431–435.

    Article  ADS  CAS  Google Scholar 

  16. Schwan, J., Ulrich, S., Batori, V., Ehrhadt, H., Silva, S.P.R. (1996) Raman spectroscopy on amorphous carbon films, J. Appl. Phys. 80, 440–447.

    Article  ADS  CAS  Google Scholar 

  17. Geiderikh, M.A. (1965) The study of thermal transformation of polyacrylonitrile, PhD theses, A.V. Topchiev Institute of Petrochemical Synthesis RAS, Moscow, Russia.

    Google Scholar 

  18. Kozlov, V.V., Karpacheva, G.P., Petrov, V.S., Lazovskaya, E.V. (2001) The feature of forming the system of polyconjugated bonds for polyacryloniyrile by thermal treatment in vacuum, Polymer Science, A 43, 15–20.

    Google Scholar 

  19. Yao, M., Liu, B., Zou, Y., Wang, L., Li, D., Cui, T. et al. (2005) Synthesis of single-wall carbon nanotubes and long nanotube ribbons with Ho/Ni as catalyst by arc discharge, Carbon 43, 2894–2901.

    Article  CAS  Google Scholar 

  20. Savitsky, E.M. (ed.) (1984) Metallurgy: Noble metals, p. 84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

KARPACHEVA, G. et al. (2007). NANOSTRUCTURED CARBON MATERIALS BASED ON IR-PYROLIZED POLYACRYLONITRILE. In: Veziroglu, T.N., et al. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5514-0_74

Download citation

Publish with us

Policies and ethics