CREATION OF HYDROGEN - SELECTIVE TUBULAR COMPOSITE MEMBRANES BASED ON Pd-ALLOYS: I. IMPROVEMENT OF CERAMIC SUPPORT WITH Ni LAYER DEPOSITION

  • O.K. ALEXEEVA
  • D.M. AMIRKHANOV
  • A.A. KOTENKO
  • M.M. CHELYAK
Part of the NATO Security through Science Series A: Chemistry and Biology book series

Abstract

alternative to expensive dense Pd-membranes are composite membranes with porous ceramic supports allowing considerable reduction of Pd (Pd alloy) layer thickness and membrane cost and ensuring at the same time enhanced permeability and good operating ability. However commercially available porous materials can not be directly used. The development of tubular composite α-Al2O3 -based supports for Pd-containing metal membrane is reported. Their distinction consists in using metal nickel, which is analog of palladium in many respects, for the modification of the porous structure of ceramic substrates. Magnetron sputtering is the most perspective for support modification with Ni layer and the following Pd-thin film deposition.

Keywords

Permeability Nickel Methane Sulfide Acetone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheng Y.S. Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from Towngas mixture. J.Membr.Sci 2002; 204: 329–340.CrossRefGoogle Scholar
  2. 2.
    Yeung K.L, Sebastian J.M, Varma A. Novel preparation of Pd/Vycor composite membranes. Catalysis Today 1995; 25: 231–236.CrossRefGoogle Scholar
  3. 3.
    Jayaraman V., Lin Y.S. Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes. J.Membr.Sci 1995; 104: 251–262.CrossRefGoogle Scholar
  4. 4.
    Jayaraman V., Lin Y.S, Pakala M., Lin R.Y. Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition. J.Membr.Sci 1995; 99: 89–100.CrossRefGoogle Scholar
  5. 5.
    Zhang Y., Ozaki T., Komaki M., Nishimura C. Hydrogen permeation characteristics of V-15Ni membrane with Pd/Ag overlayer by sputtering. J.Alloys & Compounds 2003; 356–357: 553–556.CrossRefGoogle Scholar
  6. 6.
    Nam S.-E., Lee S.-H., Lee K.-H. Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition. J. Membr. Sci. 1999;153:163–173.CrossRefGoogle Scholar
  7. 7.
    Li A., Xiong G., Gu. J., Zheng L. Preparation of Pd/ceramic composite membrane I. Improvement of the conventional preparation technique. J.Membr.Sci 1996; 110: 257–260.CrossRefGoogle Scholar
  8. 8.
    Alexeeva O.K., Alexeev S.Yu., Amirkhanov D.M., Kotenko A.A., Chelyak M.M., Shapir B.L. High-temperature catalytic membrane reactors for processes including hydrogen. Membranes. Ser. Critical technologies (in Russian) 2003; No 3 (19): 20–31.Google Scholar
  9. 9.
    Alexeeva OK, Alexeev S.Yu., Shapir B.L., Tulskii M.N. Modified tubular catalytic membrane reactor for hydrogen production from hydrocarbons. Eds. M.D. Hampton et al. Hydrogen Materials Science and Chemistry of Metal Hydrides, 2002 Kluwer Academic Publishers, NATO Science Series II/71, 339–347.Google Scholar
  10. 10.
    Lin Y.-M., Rei M.-H. Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer. Int.J. Hydrogen Energy 2000; 25: 211–219.CrossRefGoogle Scholar
  11. 11.
    Gallucci F., Paturzo L., Basile A. A simulation study of the steam reforming of methane in a dense tubular membrane reactor. Int.J. Hydrogen Energy 2004; 29: 611–617.CrossRefGoogle Scholar
  12. 12.
    Lin Y.-M., Rei M.-H. An integrated purification and production of hydrogen with a palladium membrane-catalytic reactor. Catalysis Today 1998; 44: 343–349.CrossRefGoogle Scholar
  13. 13.
    Tanaka D.A.P., Llosa Tanco M.A., Niwa Si., Wakui Y., Mizukami F, Namba T., Suzuki T.M. Preparation of palladium and silver alloy membrane on a porous -alumina tube via simultaneous electroless plating. J.Membr.Sci 2005; 247: 21–27.CrossRefGoogle Scholar
  14. 14.
    Pick M.A., Sonnenberg K. A model for atomic hydrogen-metal interactions - application to recycling, recombination and permeation. J.Nucl.Mater 1985; 131:208–220.CrossRefGoogle Scholar
  15. 15.
    Nishimura C., Ozaki T., Komaki M., Zhang Y. Hydrogen permeation and transmission electron microscope observations of V-Al alloys. J. Alloys & Compounds 2003; 356–357:295–299.CrossRefGoogle Scholar
  16. 16.
    Buxbaum R.E., Kinney A.V. Hydrogen transport through tubular membranes of palladium-coated tantalum and niobium. Ind.Eng.Chem.Res. 1996; 35: 530–537.CrossRefGoogle Scholar
  17. 17.
    Armor J.N. Membrane catalysis: where is it now, what needs to be done? Catalysis today 1995; 25: 199–207.CrossRefGoogle Scholar
  18. 18.
    Hydride systems. Hand-book. Ed. B.A. Kolachev et al. Moscow, Metallurgy. 1992 (in Russian) 352 p.Google Scholar
  19. 19.
    Yamakawa K., Ege M., Ludescher B., Hirsher M., Kronmuller H. J.Alloys & Compounds 2001; 321: 17–23.CrossRefGoogle Scholar
  20. 20.
    Nishimura C., Komaki M., Hwang S., Amano M. V-Ni alloy membranes for hydrogen purification J.Alloys & Compounds 2002; 330–332: 902–906.CrossRefGoogle Scholar
  21. 21.
    Liu B., Dai W., Wu G., Deng J.-F. Amorphous alloy/ceramic composite membrane: preparation, characterization and reaction studies. Catalysis Letters 1997; 49: 181–188.CrossRefGoogle Scholar
  22. 22.
    Alexeeva O.K., Shapir B.L., Sumarokov V.N., Vinogradova E.A. Interaction of hydrogen sulfide with Ni-Al protective coatings prepared by vacuum deposition. Int.J. Hydrogen Energy 1999; 24: 235–239.CrossRefGoogle Scholar
  23. 23.
    Alexeeva O., Sumarokov V., Zakharov A. Interaction of magnetr4on sputtered PrNi5 films with hydrogen. Int.J. Hydrogen Energy 1996; 21: 1001–1003.CrossRefGoogle Scholar
  24. 24.
    Alexeeva O., Chistov A., Sumarokov V. Preparation of hydride-forming intermetallic films. Int.J. Hydrogen Energy 1995; 20: 397–399.CrossRefGoogle Scholar
  25. 25.
    Thornton J.A. The microstructure of sputter-deposited coatings. J.Vac.Sci.- Technol. 1986; A4(6):3059–3065.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • O.K. ALEXEEVA
    • 1
  • D.M. AMIRKHANOV
    • 1
  • A.A. KOTENKO
    • 1
  • M.M. CHELYAK
    • 1
  1. 1.Russian Research Centre “Kurchatov Institute”, Hydrogen Energy & Plasma Technology InstituteMoscowRussia

Personalised recommendations