Skip to main content

Abstract

Antibodies are multi-subunit glycoproteins, produced by the vertebrate immune system. They recognize and bind to their target antigens with great affinity and specificity, which allows them to be used for many applications, including the diagnosis, prevention and treatment of human and animal disease (Anderson and Krummen 2003; Chad and Chamow 2001; Fischer and Emans 2000). It is estimated that approximately 1000 therapeutic recombinant antibodies are under development, up to one quarter of which may already be undergoing clinical trials. A large proportion of these antibodies recognize cancer antigens but others have been developed for the diagnosis and treatment of infectious diseases, acquired disorders and even transplant rejection (Gavilondo and Larrick 2000). As well as biomedical applications, antibodies can also be exploited to prevent diseases in plants (Schillberg et al. 2001), to detect and remove environmental contaminants, and for various industrial processes such as affinity purification and molecular targeting (Stoger et al. 2005b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen DC, Krummen L (2003) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 3: 117–123

    Google Scholar 

  • Artsaenko O, Kettig B, Fiedler U, Conrad U, Düring K (1998) Potato tubers as a biofactory for recombinant antibodies. Mol Breeding 4: 313–319

    CAS  Google Scholar 

  • Bai Y, Glatz CE (2003) Bioprocess considerations for expanded-bed chromatography of crude canola extract: sample preparation and adsorbent reuse. Biotechnol Bioeng 81: 775–782

    PubMed  CAS  Google Scholar 

  • Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch D (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA 98: 2899–2904

    PubMed  CAS  Google Scholar 

  • Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnol 22: 1399–1408

    CAS  Google Scholar 

  • Benvenuto E, Ordas RJ, Tavazza R, Ancora G, Biocca S, Cattaneo A, Galeffi P (1991) ‘Phytoantibodies’: a general vector for the expression of immunoglobulin domains in transgenic plants. Plant Mol Biol 17: 865–874

    PubMed  CAS  Google Scholar 

  • Blixt O, Allin K, Pereira L, Datta A, Paulson JC (2002) Efficient chemoenzymatic synthesis of O-linked sialyl oligosaccharides. J Am Chem Soc 124: 5739–5746

    PubMed  CAS  Google Scholar 

  • Borisjuk NV, Borisjuk LG, Logendra S, Petersen F, Gleba Y, Raskin I (1999) Production of recombinant proteins in plant root exudates. Nature Biotechnol 17: 466–469

    CAS  Google Scholar 

  • Bouquin T, Thomsen M, Nielsen LK, Green TH, Mundy J, Hanefeld Dziegiel M (2002) Human anti-rhesus D IgG1 antibody produced in transgenic plants. Transgenic Res 11: 115–122

    PubMed  CAS  Google Scholar 

  • Bruyns AM, De Jaeger G, De Neve M, De Wilde C, Van Montagu M, Depicker A (1996) Bacterial and plant-produced scFv proteins have similar antigenbinding properties. FEBS Lett 386: 5–10

    PubMed  CAS  Google Scholar 

  • Cabanes-Macheteau M, Fitchette-Laine AC, Loutelier-Bourhis C, Lange C, Vine N, Ma J, Lerouge P, Faye L (1999) N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology 9: 365–372

    PubMed  CAS  Google Scholar 

  • Canizares MC, Nicholson L, Lomonossoff GP (2005) Use of viral vectors for vaccine production in plants. Immunol Cell Biol 83: 263–270

    PubMed  CAS  Google Scholar 

  • Chadd HE, Chamow SM (2001) Therapeutic antibody expression technology. Curr Opin Biotrechnol 12: 188–194

    CAS  Google Scholar 

  • Chargelegue D, Drake PM, Obregon P, Prada A, Fairweather N, Ma JK (2005) Highly immunogenic and protective recombinant vaccine candidate expressed in transgenic plants. Infect Immun 73: 5915–5922

    PubMed  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5: 213–218

    PubMed  CAS  Google Scholar 

  • Christou P, Stoger E, Twyman RM (2004) Monocot systems for molecular farming. In: Fischer R, Schillberg S (eds) Molecular Farming: Plant-made Pharmaceuticals and Technical Proteins. John Wiley & Sons Inc., NY, pp 55–67

    Google Scholar 

  • Chu L, Robinson DK (2001) Industrial choices for protein production by largescale cell culture. Curr Opin Biotechnol 12: 180–187

    PubMed  CAS  Google Scholar 

  • Commandeur U, Twyman RM, Fischer R (2003) The biosafety of molecular farming in plants. AgBiotechNet 5: ABN 110

    Google Scholar 

  • Conrad U, Fiedler U (1998) Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol 38: 101–109

    PubMed  CAS  Google Scholar 

  • CPMP (2002) Points to consider on quality aspects of medicinal products containing active substances produced by stable transgene expression in higher plants (CPMP/BWP/764/02), The European Agency for the Evaluation of Medicinal Products (EMEA)

    Google Scholar 

  • Cramer CL, Boothe JG, Oishi KK (1999) Transgenic plants for therapeutic proteins: linking upstream and downstream technologies. Curr Top Microbiol & Immunol 240: 95–118

    CAS  Google Scholar 

  • D’Aoust MA, Lerouge P, Busse U, Bilodeau P, Trepanier S, Gomord V, Faye L, Vezina LP (2004) Efficient and reliable production of pharmaceuticals in alfalfa. In: Molecular Farming: Plant-made Pharmaceuticals and Technical Proteins (Fischer R, Schillberg S (eds). John Wiley & Sons, NY, 1–12

    Google Scholar 

  • Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005a) Chloroplastderived vaccine antigens and other therapeutic proteins. Vaccine 23: 1779–1783

    CAS  Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005b) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23: 238–245

    CAS  Google Scholar 

  • De Jaeger G, Scheffer S, Jacobs A, Zambre M, Zobell O, Goossens A, Depicker A, Angenon G (2002) Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nature Biotechnol 20: 1265–1268

    Google Scholar 

  • De Neve M, De Loose M, Jacobs A, Van Houdt H, Kaluza B, Weidle U, Van Montagu M, Depicker A (1993) Assembly of an antibody and its derived antibody fragment in Nicotiana and Arabidopsis. Transgenic Res 2: 227–237

    PubMed  Google Scholar 

  • De Wilde C, De Rycke R, Beeckman T, De Neve M, Van Montagu M, Engler G, Depicker A (1998) Accumulation pattern of IgG antibodies and Fab fragments in transgenic Arabidopsis thaliana plants. Plant Cell Physiol 39: 639–646

    PubMed  Google Scholar 

  • De Wilde C, Peeters K, Jacobs A, Peck I, Depicker A (2002) Expression of antibodies and Fab fragments in transgenic potato plants: a case study for bulk production in crop plants. Mol Breeding 9: 271–282

    Google Scholar 

  • Decker EL, Reski R (2004) The moss bioreactor. Curr Opin Plant Biol 7: 166–170

    PubMed  CAS  Google Scholar 

  • Donson J, Kearney CM, Hilf ME, Dawson WO (1991) Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proc Natl Acad Sci USA 88: 7204–7208

    PubMed  CAS  Google Scholar 

  • Doran PM (2006) Loss of recombinant proteins from plant cell cultures. Trends Biotechnol (in press)

    Google Scholar 

  • Drake PM, Chargelegue DM, Vine ND, van Dolleweerd CJ, Obregon P, Ma JK (2003) Rhizosecretion of a monoclonal antibody protein complex from transgenic tobacco roots. Plant Mol Biol 52: 233–241

    PubMed  CAS  Google Scholar 

  • Drossard J (2003) Downstream processing of plant-derived recombinant therapeutic proteins. In: Fischer R, Schillberg S (eds) Molecular Farming: Plant-made Pharmaceuticals and Technical Proteins. John Wiley & Sons Inc., NY, pp 217–231

    Google Scholar 

  • Dyck MK, Lacroix D, Pothier F, Sirard MA (2003) Making recombinant proteins in animals – different systems, different applications. Trends Biotechnol 21: 394–399

    PubMed  CAS  Google Scholar 

  • Ehsani P, Meunier A, Nato F, Jafari A, Nato A, Lafaye P (2003) Expression of anti human IL-4 and IL-6 scFvs in transgenic tobacco plants. Plant Mol Biol 52: 17–29

    PubMed  CAS  Google Scholar 

  • Fahrner RL, Knudsen HL, Basey CD, Galan W, Feuerhelm D, Vanderlaan M, Blank GS (2001) Industrial purification of pharmaceutical antibodies: development, operation, and validation of chromatography processes. Biotechnol Genet Eng Rev 18: 301–327

    PubMed  CAS  Google Scholar 

  • Faye L, Boulaflous A, Benchabane M, Gomord V, Michaud D (2005) Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 23: 1770–1778

    PubMed  CAS  Google Scholar 

  • FDA (2002) Guidance for industry. Drugs, biologics, and medical devices derived from bioengineered plants for use in humans and animals. Food and Drug Administration

    Google Scholar 

  • Fischer R, Emans N, Schuster F, Hellwig S, Drossard J (1999) Towards molecular farming in the future: using plant-cell-suspension cultures as bioreactors. Biotechnol Appl Biochem 30: 109–112

    PubMed  CAS  Google Scholar 

  • Fischer R, Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res 9: 279–299

    PubMed  CAS  Google Scholar 

  • Francisco JA, Gawlak SL, Miller M, Bathe J, Russell D, Chace D, Mixan B, Zhao L, Fell HP, Siegall CB (1997) Expression and characterization of bryodin 1 and a bryodin 1-based single-chain immunotoxin from tobacco cell culture. Bioconjug Chem 8: 708–713

    PubMed  CAS  Google Scholar 

  • Franconi R, Roggero P, Pirazzi P, Arias FJ, Desiderio A, Bitti O, Pashkoulov D, Mattei B, Bracci L, Masenga V, Milne RG, Benvenuto E (1999) Functional expression in bacteria and plants of an scFv antibody fragment against tospoviruses. Immunotechnology 4: 189–201

    PubMed  CAS  Google Scholar 

  • Franklin SE, Mayfield SP (2005) Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opin Biol Ther 5: 225–235

    PubMed  CAS  Google Scholar 

  • Gasdaska JR, Spencer D, Dickey L (2003) Advantages of therapeutic protein production in the aquatic plant Lemna. BioProcessing J Mar/Apr: 49–56

    Google Scholar 

  • Gavilondo JV, Larrick JW (2000) Antibody production technology in the millennium. Biotechniques 29: 128–145

    PubMed  CAS  Google Scholar 

  • Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nature Biotechnol 22: 1409–1414

    CAS  Google Scholar 

  • Gleba Y, Marillonnet S, Klimyuk V (2004) Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr Opin Plant Biol 7: 182–188

    PubMed  CAS  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection – a new platform for expressing recombinant vaccines in plants. Vaccine 23: 2042–2048

    PubMed  CAS  Google Scholar 

  • Gomord V, Sourrouille C, Fitchette AC, Bardor M, Pagny S, Lerouge P, Faye L (2004) Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol J 2: 83–100

    PubMed  CAS  Google Scholar 

  • Gomord V, Chamberlain P, Jefferis R, Faye L (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol 23: 559–565

    PubMed  CAS  Google Scholar 

  • Green L (1999) Antibody engineering via genetic engineering of the mouse: xenomouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J Immunol Methods 231: 11–23

    PubMed  CAS  Google Scholar 

  • Griffiths A, Duncan A (1998) Strategies for selection of antibodies by phage display. Curr Opin Biotechnol 9: 102–108

    PubMed  CAS  Google Scholar 

  • Harvey AJ, Speksnijder G, Baugh LR, Morris JA, Ivarie R (2002) Expression of exogenous protein in the egg white of transgenic chickens. Nature Biotechnol 20: 396–399

    CAS  Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nature Biotechnol 22: 1415–1422

    CAS  Google Scholar 

  • Hendy S, Chen ZC, Barker H, Santa Cruz S, Chapman S, Torrance L, Cockburn W, Whitelam GC (1999) Rapid production of single-chain Fv fragments in plants using a potato virus X episomal vector. J Immunol Methods 231: 137–146

    PubMed  CAS  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342: 76–78

    PubMed  CAS  Google Scholar 

  • Hood EE, Woodard SL, Horn ME (2002) Monoclonal antibody manufacturing in transgenic plants – myths and realities. Curr Opin Biotechnol 13: 630–635

    PubMed  CAS  Google Scholar 

  • Hull AK, Criscuolo CJ, Mett V, Groen H, Steeman W, Westra H, Chapman G, Legutki B, Baillie L, Yusibov V (2005) Human-derived, plant-produced monoclonal antibody for the treatment of anthrax. Vaccine 23: 2082–2086

    PubMed  CAS  Google Scholar 

  • Ikonomou L, Schneider YJ, Agathos SN (2003) Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol 62: 1–20

    PubMed  CAS  Google Scholar 

  • Jefferis R (2001) Glycosylation of human IgG antibodies: relevance to therapeutic applications. Biopharm 2001: 19–27

    Google Scholar 

  • Kapila J, De Rycke R, van Montagu M, Angenon G (1997) An Agrobacterium -mediated transient gene expression system for intact leaves. Plant Sci 122: 101–108

    CAS  Google Scholar 

  • Kathuria S, Sriraman R, Nath R, Sack M, Pal R, Artsaenko O, Talwar GP, Fischer R, Finnern R (2002) Efficacy of plant-produced recombinant antibodies against HCG. Hum Reprod 17: 2054–2061

    PubMed  CAS  Google Scholar 

  • Khoudi H, Laberge S, Ferullo JM, Bazin R, Darveau A, Castonguay Y, Allard G, Lemieux R, Vezina LP (1999) Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnol Bioeng 64: 135–143

    PubMed  CAS  Google Scholar 

  • Kipriyanov SM, Little M (1999) Generation of recombinant antibodies. Mol Biotechnol 12: 173–201

    PubMed  CAS  Google Scholar 

  • Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S, Hanlon CA, Rupprecht C, Dietzschold B, Golovkin M, Koprowski H (2003) Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci USA 100: 8013–8018

    PubMed  CAS  Google Scholar 

  • Ko K, Steplewski Z, Glogowska M, Koprowski H (2005) Inhibition of tumor growth by plant-derived mAb. Proc Natl Acad Sci USA 102: 7026–7030

    PubMed  CAS  Google Scholar 

  • Komarnytsky S, Borisjuk NV, Borisjuk LG, Alam MZ, Raskin I (2000) Production of recombinant proteins in tobacco guttation fluid. Plant Physiol 124: 927–933

    PubMed  CAS  Google Scholar 

  • Lelivelt CL, McCabe MS, Newell CA, Desnoo CB, van Dun KM, Birch-Machin I, Gray JC, Mills KH, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.) Plant Mol Biol 58: 763–774

    PubMed  CAS  Google Scholar 

  • Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268: 716–719

    PubMed  CAS  Google Scholar 

  • Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4: 794–805

    PubMed  CAS  Google Scholar 

  • Magee AM, Coyne S, Murphy D, Horvath EM, Medgyesy P, Kavanagh TA (2004) T7 RNA polymerase-directed expression of an antibody fragment transgene in plastids causes a semi-lethal pale-green seedling phenotype. Transgenic Res 13: 325–337

    PubMed  CAS  Google Scholar 

  • Makvandi-Nejad S, McLean MD, Hirama T, Almquist KC, Mackenzie CR, Hall JC (2005) Transgenic tobacco plants expressing a dimeric single-chain variable fragment (scfv) antibody against Salmonella enterica serotype Paratyphi B. Transgenic Res 14: 785–792

    PubMed  CAS  Google Scholar 

  • Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 21: 20–28

    PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55: 289–313

    PubMed  CAS  Google Scholar 

  • Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnol 23: 718–723

    CAS  Google Scholar 

  • Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100: 438–442

    PubMed  CAS  Google Scholar 

  • Mayfield SP, Franklin SE (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine 23: 1828–1832

    PubMed  CAS  Google Scholar 

  • McCormick AA, Kumagai MH, Hanley K, Turpen TH, Hakim I, Grill LK, Tuse D, Levy S, Levy R (1999) Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proc Natl Acad Sci USA 96: 703–708

    PubMed  CAS  Google Scholar 

  • Menkhaus TJ, Bai Y, Zhang C, Nikolov ZL, Glatz CE (2004) Considerations for the recovery of recombinant proteins from plants. Biotechnol Prog. 20: 1001–1014

    PubMed  CAS  Google Scholar 

  • Menkhaus TJ, Glatz CE (2005) Antibody capture from corn endosperm extracts by packed bed and expanded bed adsorption. Biotechnol Prog. 21: 473–485

    PubMed  CAS  Google Scholar 

  • Nikolov ZL, Woodard SL (2004) Downstream processing of recombinant proteins from transgenic feedstock. Curr Opin Biotechnol 15: 479–486

    PubMed  CAS  Google Scholar 

  • Nugent GD, Coyne S, Nguyen TT, Kavanagh TA, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci 170: 135–142

    CAS  Google Scholar 

  • Padidam M (2003) Chemically regulated gene expression in plants. Curr Opin Plant Biol 6: 169–177

    PubMed  CAS  Google Scholar 

  • Perrin Y, Vaquero C, Gerrard I, Sack M, Drossard J, Stoger E, Christou P, Fischer R (2000) Transgenic pea seeds as bioreactors for the production of a singlechain Fv fragment (scFV) antibody used in cancer diagnosis and therapy. Mol Breeding 6: 345–352

    CAS  Google Scholar 

  • Raju TS, Briggs J, Borge SM, Jones AJS (2000) Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branchspecific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiolgy 10: 477–486

    CAS  Google Scholar 

  • Rodriguez M, Ramirez NI, Ayala M, Freyre F, Perez L, Triguero A, Mateo C, Selman-Housein G, Gavilondo JV, Pujol M (2005) Transient expression in tobacco leaves of an aglycosylated recombinant antibody against the epidermal growth factor receptor. Biotechnol Bioeng 89: 188–194

    PubMed  CAS  Google Scholar 

  • Schaefer DG (2002) A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu Rev Plant Biol 53: 477–501

    PubMed  CAS  Google Scholar 

  • Schillberg S, Zimmermann S, Voss A, Fischer R (1999) Apoplastic and cytosolic expression of full-size antibodies and antibody fragments in Nicotiana tabacum. Transgenic Res 8: 255–263

    PubMed  CAS  Google Scholar 

  • Schillberg S, Zimmermann S, Zhang MY, Fischer R (2001) Antibody-based resistance to plant pathogens. Transgenic Res 10: 1–12

    PubMed  CAS  Google Scholar 

  • Schillberg S, Emans N, Fischer R (2002) Antibody molecular farming in plants and plant cells. Phytochem Rev 1: 45–54

    CAS  Google Scholar 

  • Schillberg S, Fischer R, Emans N (2003) Molecular farming of recombinant antibodies in plants. Cell Mol Life Sci 60: 433–445

    PubMed  CAS  Google Scholar 

  • Schunmann PHD, Coia G, Waterhouse PM (2002) Biopharming the SimpliREDTM HIV diagnostic reagent in barley, potato and tobacco. Mol. Breeding 9: 113–121

    Google Scholar 

  • Schunmann PHD, Surin B, Waterhouse PM (2003) A suite of novel promoters and terminators for plant biotechnology. II. The pPLEX series for use in monocots Funct Plant Biol 30: 453–460

    CAS  Google Scholar 

  • Semenyuk EG, Orlova IV, Stremovskii OA, Balandin TG, Nosov AM, Bur’yanov Y, Deev SM (2002) Transgenic tobacco plants produce miniantibodies against human ferritin. Dokl Biochem Biophys 384: 176–178

    PubMed  CAS  Google Scholar 

  • Seveno M, Bardor M, Paccalet T, Gomord V, Lerouge P, Faye L (2004) Glycoprotein sialylation in plants? Nature Biotechnol 22: 1351–1352

    CAS  Google Scholar 

  • Shah MM, Fujiyama K, Flynn CR, Joshi L (2003) Sialylated endogenous glycoconjugates in plant cells. Nature Biotechnol 21: 1470–1471

    CAS  Google Scholar 

  • Shah MM, Fujiyama K, Flynn CR, Joshi L (2004) Glycoprotein sialylation in plants? Reply. Nature Biotechnol 22: 1352–1353

    CAS  Google Scholar 

  • Sharp JM, Doran PM (2001a) Characterization of monoclonal antibody fragments produced by plant cells. Biotechnol Bioeng 73: 338–346

    CAS  Google Scholar 

  • Sharp JM, Doran PM (2001b) Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures. Biotechnol Prog 17: 979–992

    CAS  Google Scholar 

  • Sidhu SS (2000) Phage display in pharmaceutical biotechnology. Curr Opin Biotechnol 11: 610–616

    PubMed  CAS  Google Scholar 

  • Sriraman R, Sack M, Talwar GP, Fischer R (2003) Glycosylation of recombinant antibodies in plants. In: Proceedings of the Ninth Annual Ranbaxy Science Foundation Symposium. Ranbaxy Science Foundation, New Delhi, pp 89–98

    Google Scholar 

  • Sriraman R, Bardor M, Sack M, Vaquero C, Faye L, Fischer R, Finnern R, Lerouge P (2004) Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core- (1, 3)- fucose residues. Plant Biotechnol J 2: 279–287

    PubMed  CAS  Google Scholar 

  • Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42: 583–590

    PubMed  CAS  Google Scholar 

  • Stoger E, Sack M, Perrin Y, Vaquero C, Torres E, Twyman RM, Christou P, Fischer R (2002) Practical considerations for pharmaceutical antibody production in different crop systems. Mol Breeding 9: 149–158

    CAS  Google Scholar 

  • Stoger E, Ma JK, Fischer R, Christou P (2005a) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16: 167–173

    CAS  Google Scholar 

  • Stoger E, Sack M, Nicholson L, Fischer R, Christou P (2005b) Recent progress in plantibody technology. Curr Pharm Des 11: 2439–2457

    CAS  Google Scholar 

  • Strasser R, Altmann F, Mach L, Glossl J, Steinkellner H (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1, 2-linked xylose and core alpha1, 3-linked fucose. FEBS Lett 561: 132–136

    PubMed  CAS  Google Scholar 

  • Subroto MA, Hamill JD, Doran PM (1996) Development of shooty teratomas from several solanaceous plants: growth kinetics, stoichiometry and alkaloid production. J Biotechnol 45: 45–57

    CAS  Google Scholar 

  • Torres E, Vaquero C, Nicholson L, Sack M, Stoger E, Drossard J, Christou P, Fischer R, Perrin Y (1999) Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res 8: 441–449

    PubMed  CAS  Google Scholar 

  • Triguero A, Cabrera G, Cremata JA, Yuen CT, Wheeler J, Ramírez NI (2005) Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly high-mannose-type N-glycans. Plant Biotechnol J 3: 449–457

    PubMed  CAS  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21: 570–578

    PubMed  CAS  Google Scholar 

  • Twyman RM, Schillberg S, Fischer R (2005) Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs 10: 185–218

    PubMed  CAS  Google Scholar 

  • Valdes R, Gomez L, Padilla S, Brito J, Reyes B, Alvarez T, Mendoza O, Herrera O, Ferro W, Pujol M, Leal V, Linares M, Hevia Y, Garcia C, Mila L, Garcia O, Sanchez R, Acosta A, Geada D, Paez R, Luis Vega J, Borroto C (2003a) Large-scale purification of an antibody directed against hepatitis B surface antigen from transgenic tobacco plants. Biochem Biophys Res Commun 308: 94–100

    CAS  Google Scholar 

  • Valdes R, Reyes B, Alvarez T, Garcia J, Montero JA, Figueroa A, Gomez L, Padilla S, Geada D, Abrahantes MC, Dorta L, Fernandez D, Mendoza O, Ramirez N, Rodriguez M, Pujol M, Borroto C, Brito J (2003b) Hepatitis B surface antigen immunopurification using a plant-derived specific antibody produced in large scale. Biochem Biophys Res Commun 310: 742–747

    CAS  Google Scholar 

  • Vaquero C, Sack M, Chandler J, Drossard J, Schuster F, Monecke M, Schillberg S, Fischer R (1999) Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc Natl Acad Sci USA 96: 11128–11133

    PubMed  CAS  Google Scholar 

  • Vaquero C, Sack M, Schuster F, Finnern R, Drossard J, Schumann D, Reimann A, Fischer R (2002) A carcinoembryonic antigen-specific diabody produced in tobacco. FASEB J 16: 408–410

    PubMed  CAS  Google Scholar 

  • Verch T, Yusibov V, Koprowski H (1998) Expression and assembly of a fulllength monoclonal antibody in plants using a plant virus vector. J Immunol Methods 220: 69–75

    PubMed  CAS  Google Scholar 

  • Vine ND, Drake P, Hiatt A, Ma JK (2001) Assembly and plasma membrane targeting of recombinant immunoglobulin chains in plants with a murine immunoglobulin transmembrane sequence. Plant Mol Biol 45: 159–167

    PubMed  CAS  Google Scholar 

  • Warner TG (2000) Metabolic engineering glycosylation: biotechnology’s challenge to the glycobiologist in the new millennium. In: Carbohydrates in Chemistry and Biology (Ernst B, Hart GW, Sanay P (eds), Wiley-VCH, NY, pp 1043–1064

    Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnol 22: 1393–1398

    CAS  Google Scholar 

  • Yano A, Maeda F, Takekoshi M (2004) Transgenic tobacco cells producing the human monoclonal antibody to hepatitis B virus surface antigen. J Med Virol 73: 208–215

    PubMed  CAS  Google Scholar 

  • Yusibov V, Rabindran S, Commandeur U, Twyman RM, Fischer R (2006) The potential of plant virus vectors for vaccine production. Drugs in R & D (in press)

    Google Scholar 

  • Zeitlin L, Olmsted SS, Moench TR, Co MS, Martinell BJ, Paradkar VM, Russell DR, Queen C, Cone RA, Whaley KJ (1998) A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nature Biotechnol 16: 1361–1364

    CAS  Google Scholar 

  • Ziegler A, Cowan GH, Torrance L, Ross HA, Davies HV (2000) Facile assessment of cDNA constructs for expression of functional antibodies in plants using the potato virus X vector. Mol Breeding 6: 327–335

    CAS  Google Scholar 

  • Zimmermann S, Schillberg S, Liao YC, Fisher R (1998) Intracellular expression of TMV-specific single-chain Fv fragments leads to improved virus resistance in Nicotiana tabacum. Mol Breeding 4: 369–379

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Twyman, R., Schillberg, S., Fischer, R. (2007). Molecular farming of antibodies in plants. In: RANALLI, P. (eds) Improvement of Crop Plants for Industrial End Uses. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5486-0_15

Download citation

Publish with us

Policies and ethics