Acoustic Cell Processing for Viral Transduction or Bioreactor Cell Retention

  • V.M. Gorenflo
  • P. Beauchesne
  • V. Tayi
  • O. Lara
  • H. Drouin
  • J.B. Ritter
  • V. Chow
  • C. Sherwood
  • B.D. Bowen
  • J.M. Piret

Abstract

A major limitation of retrovirus gene therapy technology is the often low percentage of target cells transduced. This is in part due to the low diffusivity of retroviruses, as well as their short half-life (~5 h). An approach to overcome these limitations has been developed using the forces in an acoustic standing wave field. An air-backflush mode of operation obtained up to 8-fold increases in TF-1 cell transduction compared to static controls and this was sustained from 2 to 24 h. The transduction increased as a function of power input, but at elevated power levels the acoustic transducer generated excessive heat. A new design with improved heat dissipation allowed continuous acoustic treatment over 2 days with no decrease in cell viability. This acoustically increased transduction reduces the need for additives and avoids the complications of recovering anchored cells. While acoustic separators can be used for bioreactor volumes ranging from hundreds of mL to >100 L, it is also important to define operational settings that avoid negative thermal influences on the cells. Additional cell culture experiments with CHO cells were performed to determine the acceptable temperature variations.

Keywords

Sedimentation Iodide Cavitation Aeration Flushing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreadis, S. T., C. M. Roth, J. M. Le Doux, J. R. Morgan and M. L. Yarmush 1999. “Largescale processing of recombinant retroviruses for gene therapy.” Biotechnol Progr 15(1): 1–11.CrossRefGoogle Scholar
  2. Bajaj, B., P. Lei and S. T. Andreadis 2001. “High efficiencies of gene transfer with immobilized recombinant retrovirus: kinetics and optimization.” Biotechnol Prog 17(4): 587–96.CrossRefGoogle Scholar
  3. Chan, L. M. C., C. Coutelle and M. Themis 2001. “A novel human suspension culture packaging cell line for production of high-titre retroviral vectors.” Gene Ther 8(9): 697–703.CrossRefGoogle Scholar
  4. Chuck, A. S. and B. O. Palsson 1996. “Consistent and high rates of gene transfer can be obtained using flow-through transduction over a wide range of retroviral titers.” Hum Gene Ther 7(6): 743–50.CrossRefGoogle Scholar
  5. Cornetta, K. and W. F. Anderson 1989. “Protamine Sulfate as an Effective Alternative to Polybrene in Retroviral-Mediated Gene-Transfer — Implications for Human-Gene Therapy.” J Virol Methods 23(2): 187–194.CrossRefGoogle Scholar
  6. Gorenflo, V. M., S. Angepat, B. D. Bowen and J. M. Piret 2003. “Optimization of an acoustic cell filter with a novel air-backflush system.” Biotechnol Prog 19(1): 30–6.CrossRefGoogle Scholar
  7. Hennemann, B., J. Y. Chuo, P. D. Schley, K. Lambie, R. K. Humphries and C. J. Eaves 2000. “High-efficiency retroviral transduction of mammalian cells on positively charged surfaces.” Hum Gene Ther 11(1): 43–51.CrossRefGoogle Scholar
  8. Hennemann, B., E. Conneally, R. Pawliuk, P. Leboulch, S. Rose-John, D. Reid, J. Y. Chuo, R. K. Humphries and C. J. Eaves 1999. “Optimization of retroviral-mediated gene transfer to human NOD/SCID mouse repopulating cord blood cells through a systematic analysis of protocol variables.” Exp Hematol 27(5): 817–25.CrossRefGoogle Scholar
  9. Higashikawa, F. and L. J. Chang 2001. “Kinetic analyses of stability of simple and complex retroviral vectors.” Virology 280(1): 124–131.CrossRefGoogle Scholar
  10. Kilburn, D. G., D. J. Clarke, W. T. Coakley and D. W. Bardsley 1989. “Enhanced sedimentation of mammalian cells following acoustic aggregation.” Biotechnol Bioeng 34: 559–562.CrossRefGoogle Scholar
  11. Klein, D., S. Indraccolo, K. vonRombs, A. Amadori, B. Salmons and W. H. Gunzburg 1997. “Rapid identification of viable retrovirus-transduced cells using the green fluorescent protein as a marker.” Gene Ther 4(11): 1256–1260.CrossRefGoogle Scholar
  12. Koch, S., P. Pohl, U. Cobet and N. G. Rainov 2000. “Ultrasound enhancement of liposomemediated cell transfection is caused by cavitation effects.” Ultrasound in Medicine and Biology 26(5): 897–903.CrossRefGoogle Scholar
  13. Kuhlcke, K., B. Fehse, A. Schilz, S. Loges, C. Lindemann, F. Ayuk, F. Lehmann, N. Stute, A. A. Fauser, A. R. Zander and H. G. Eckert 2002. “Highly efficient retroviral gene transfer based on centrifugation-mediated vector preloading of tissue culture vessels.” Mol Ther 5(4): 473–8.CrossRefGoogle Scholar
  14. Newman, C. M., A. Lawrie, A. F. Brisken and D. C. Cumberland 2001. “Ultrasound gene therapy: On the road from concept to reality.” Echocardiography 18(4): 339–347.CrossRefGoogle Scholar
  15. Woodside, S. M., B. D. Bowen and J. M. Piret 1997. “Measurement of Ultrasonic Forces for Particle-Liquid Separations.” AIChE Journal 43(7): 1727–1736.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • V.M. Gorenflo
    • 1
    • 2
    • 3
  • P. Beauchesne
    • 1
    • 2
  • V. Tayi
    • 1
    • 2
  • O. Lara
    • 1
  • H. Drouin
    • 1
    • 2
  • J.B. Ritter
    • 1
  • V. Chow
    • 1
    • 2
  • C. Sherwood
    • 1
  • B.D. Bowen
    • 2
  • J.M. Piret
    • 1
    • 2
  1. 1.Michael Smith LaboratoriesVancouverCanada
  2. 2.Department of Chemical & Biological EngineeringUniversity of British ColumbiaVancouverCanada
  3. 3.Sanofi Pasteur LimitedTorontoCanada

Personalised recommendations