Skip to main content

SPECTRAL THEORY OF AUTOMORPHIC FORMS: A VERY BRIEF INTRODUCTION

  • Conference paper
Equidistribution in Number Theory, An Introduction

Part of the book series: NATO Science Series ((NAII,volume 237))

Abstract

These are the notes to accompany some lectures delivered at the 2005 NATO ASI summer school in Montréal. They constitute an introduction to the spectral theory of automorphic forms. The viewpoint is slightly nonstandard, in that we present first the “group representation” viewpoint and later descend to the upper-half plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borel, A. (1997) Automorphic forms on SL2(R), Vol. 130 of Cambridge Tracts in Math., Cambridge Univ. Press.

    Google Scholar 

  • Borel, A. and Jacquet, H. (1979) Automorphic forms and automorphic representations, In Automorphic forms, representations and L-functions, Vol. 33 of Proc. Sympos. Pure Math., Corvallis, OR, 1977, pp. 189–202, Providence, RI, Amer. Math. Soc.

    Google Scholar 

  • Duke, W. (1988) Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math. 92, 73–90.

    Article  MATH  MathSciNet  Google Scholar 

  • Duke, W., Friedlander, J., and Iwaniec, H. (1993 ) a Bounds for automorphic L-functions, Invent. Math. 112, 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  • Duke, W., Friedlander, J., and Iwaniec, H. (1993 ) b Bounds for automorphic L-functions, Invent. Math. 112, 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  • Duke, W. and Schulze-Pillot, R. (1990) Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids, Invent. Math. 99, 49–57.

    Article  MATH  MathSciNet  Google Scholar 

  • Gelbart, S. (1996) Lectures on the Arthur—Selberg trace formula, Vol. 9 of Univ. Lecture Ser., Providence, RI, Amer. Math. Soc.

    Google Scholar 

  • Gelbart, S. and Jacquet, H. (1979) Forms of GL(2) from the analytic point of view, Proc. Sympos. Pure Math. 33, 213–251.

    MathSciNet  Google Scholar 

  • Host, B. and Kra, B. (2005) Nonconventional ergodic averages and nilmanifolds, Ann. of Math. 161, 398–488.

    MathSciNet  Google Scholar 

  • Howe, R. and Tan, E.-C. (1992) Nonabelian harmonic analysis. Applications of SL(2,R), Universitext, New York, Springer.

    Google Scholar 

  • Iwaniec, H. (1987) Fourier coefficients of modular forms of half-integral weight, Invent. Math. 87, 385–401.

    Article  MATH  MathSciNet  Google Scholar 

  • Iwaniec, H. (2002) Spectral methods of automorphic forms, Vol. 53 of Grad. Stud. Math., Providence, RI, Amer. Math. Soc.

    Google Scholar 

  • Kloosterman, H. D. (1926) On the representation of numbers in the form ax2 +by2 +cz2 +dt2, Acta Math. 49, 407–464.

    Article  MathSciNet  Google Scholar 

  • Knapp, A. (2001) Representation theory of semisimple groups. An overview based on examples, Princeton, NJ, Princeton Univ. Press.

    MATH  Google Scholar 

  • Margulis, G. (1987) Formes quadratriques indéfinies et flots unipotents sur les espaces homogènes, C. R. Acad. Sci. Paris Sér. I Math. 304, 249–253.

    MATH  MathSciNet  Google Scholar 

  • Ratner, M. (1991) Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J. 63, 249–253.

    Article  MathSciNet  Google Scholar 

  • Sarnak, P. (1990) Some applications of modular forms, Vol. 99 of Cambridge Tracts in Math., Cambridge Univ. Press.

    Google Scholar 

  • Strömbergsson, A. and Venkatesh, A. (2005) Small solutions to linear congruences and Hecke equidistribution, Acta Arith. 118, 41–78.

    Article  MATH  MathSciNet  Google Scholar 

  • Vatsal, V. (2002) Uniform distribution of Heegner points, Invent. Math. 148, 1–46.

    Article  MATH  MathSciNet  Google Scholar 

  • Vogan, D. (1998) The method of coadjoint orbits for real reductive groups, In Representation theory of Lie groups, Park City, UT, 1998, pp. 179–258, Providence, RI, Amer. Math. Soc.

    Google Scholar 

  • Witte, D. (2003) Ratner’s theorems on unipotent flows, arXiv: math.DS/0310402.

    Google Scholar 

  • Ziegler, T. (2006) Universal characteristic factors and Furstenberg averages, J. Amer. Math.Soc., to appear; arXiv:math.DS/0403212.

    Google Scholar 

  • Zimmer, R. (1984) Ergodic theory and semisimple groups, Vol. 81 of Monographs Math., Birkhäuser.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Venkatesh, A. (2007). SPECTRAL THEORY OF AUTOMORPHIC FORMS: A VERY BRIEF INTRODUCTION. In: Granville, A., Rudnick, Z. (eds) Equidistribution in Number Theory, An Introduction. NATO Science Series, vol 237. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5404-4_12

Download citation

Publish with us

Policies and ethics