Advertisement

SPECTRAL THEORY OF AUTOMORPHIC FORMS: A VERY BRIEF INTRODUCTION

  • A. Venkatesh
Part of the NATO Science Series book series (NAII, volume 237)

Abstract

These are the notes to accompany some lectures delivered at the 2005 NATO ASI summer school in Montréal. They constitute an introduction to the spectral theory of automorphic forms. The viewpoint is slightly nonstandard, in that we present first the “group representation” viewpoint and later descend to the upper-half plane.

Keywords

Modular Form EISENSTEIN Series Trace Formula Automorphic Form Irreducible Unitary Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borel, A. (1997) Automorphic forms on SL2(R), Vol. 130 of Cambridge Tracts in Math., Cambridge Univ. Press.Google Scholar
  2. Borel, A. and Jacquet, H. (1979) Automorphic forms and automorphic representations, In Automorphic forms, representations and L-functions, Vol. 33 of Proc. Sympos. Pure Math., Corvallis, OR, 1977, pp. 189–202, Providence, RI, Amer. Math. Soc.Google Scholar
  3. Duke, W. (1988) Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math. 92, 73–90.MATHCrossRefMathSciNetGoogle Scholar
  4. Duke, W., Friedlander, J., and Iwaniec, H. (1993 ) a Bounds for automorphic L-functions, Invent. Math. 112, 1–8.MATHCrossRefMathSciNetGoogle Scholar
  5. Duke, W., Friedlander, J., and Iwaniec, H. (1993 ) b Bounds for automorphic L-functions, Invent. Math. 112, 1–8.MATHCrossRefMathSciNetGoogle Scholar
  6. Duke, W. and Schulze-Pillot, R. (1990) Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids, Invent. Math. 99, 49–57.MATHCrossRefMathSciNetGoogle Scholar
  7. Gelbart, S. (1996) Lectures on the Arthur—Selberg trace formula, Vol. 9 of Univ. Lecture Ser., Providence, RI, Amer. Math. Soc.Google Scholar
  8. Gelbart, S. and Jacquet, H. (1979) Forms of GL(2) from the analytic point of view, Proc. Sympos. Pure Math. 33, 213–251.MathSciNetGoogle Scholar
  9. Host, B. and Kra, B. (2005) Nonconventional ergodic averages and nilmanifolds, Ann. of Math. 161, 398–488.MathSciNetGoogle Scholar
  10. Howe, R. and Tan, E.-C. (1992) Nonabelian harmonic analysis. Applications of SL(2,R), Universitext, New York, Springer.Google Scholar
  11. Iwaniec, H. (1987) Fourier coefficients of modular forms of half-integral weight, Invent. Math. 87, 385–401.MATHCrossRefMathSciNetGoogle Scholar
  12. Iwaniec, H. (2002) Spectral methods of automorphic forms, Vol. 53 of Grad. Stud. Math., Providence, RI, Amer. Math. Soc.Google Scholar
  13. Kloosterman, H. D. (1926) On the representation of numbers in the form ax2 +by2 +cz2 +dt2, Acta Math. 49, 407–464.CrossRefMathSciNetGoogle Scholar
  14. Knapp, A. (2001) Representation theory of semisimple groups. An overview based on examples, Princeton, NJ, Princeton Univ. Press.MATHGoogle Scholar
  15. Margulis, G. (1987) Formes quadratriques indéfinies et flots unipotents sur les espaces homogènes, C. R. Acad. Sci. Paris Sér. I Math. 304, 249–253.MATHMathSciNetGoogle Scholar
  16. Ratner, M. (1991) Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J. 63, 249–253.CrossRefMathSciNetGoogle Scholar
  17. Sarnak, P. (1990) Some applications of modular forms, Vol. 99 of Cambridge Tracts in Math., Cambridge Univ. Press.Google Scholar
  18. Strömbergsson, A. and Venkatesh, A. (2005) Small solutions to linear congruences and Hecke equidistribution, Acta Arith. 118, 41–78.MATHMathSciNetCrossRefGoogle Scholar
  19. Vatsal, V. (2002) Uniform distribution of Heegner points, Invent. Math. 148, 1–46.MATHCrossRefMathSciNetGoogle Scholar
  20. Vogan, D. (1998) The method of coadjoint orbits for real reductive groups, In Representation theory of Lie groups, Park City, UT, 1998, pp. 179–258, Providence, RI, Amer. Math. Soc.Google Scholar
  21. Witte, D. (2003) Ratner’s theorems on unipotent flows, arXiv: math.DS/0310402.Google Scholar
  22. Ziegler, T. (2006) Universal characteristic factors and Furstenberg averages, J. Amer. Math.Soc., to appear; arXiv:math.DS/0403212.Google Scholar
  23. Zimmer, R. (1984) Ergodic theory and semisimple groups, Vol. 81 of Monographs Math., Birkhäuser.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • A. Venkatesh
    • 1
  1. 1.Courant InstituteCourant

Personalised recommendations