Morphological variation in Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) Solms in relation to aquatic vegetation type and the environment in the floodplain of the Rio Paraná, Brazil

  • Judith M. Milne
  • Kevin J. Murphy
  • Sidinei M. Thomaz
Part of the Developments in Hydrobiology book series (DIHY, volume 190)


Eichhornia azurea and E. crassipes are the most frequent dominants of aquatic vegetation in the floodplain of the Upper Rio Paraná in Brazil. Morphological traits of samples collected at sites where they dominated the vegetation were measured and compared between vegetation types identified in the floodplain. Total leaf weight, specific leaf area and the leaf to root weight ratio of E. azurea and total leaf dry weight, total leaf area and total plant dry weight of E. crassipes differed significantly between vegetation types from 1999. Pearson correlation coefficients indicated a number of significant relationships between morphological traits and environmental variables. Five E. azurea traits increased linearly with water depth and four with water clarity. The leaf to root weight ratio also increased linearly with sediment iron and calcium content. E. crassipes total root dry weight and total plant dry weight were respectively quadratically related to sediment calcium and the euphotic proportion of the water column. Total leaf dry weight and total plant dry weight increased linearly with water depth while remainder dry weight decreased linearly with sediment phosphorus content.

Key words

morphological traits river aquatic plants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agostinho, A. A. & M. Zalewski, 1996. Planície alagável do Alto Rio Paraná: Importância e preservação (Upper ParanáRiver floodplain: importance and preservation). Editora Universidade Estadual de Maringá. MaringáState University Publisher, Maringá, Brazil, 100 pp.Google Scholar
  2. Agostinho, A. A., S. M. Thomaz, C. V. Minte-Vera & K. O. Winemiller, 2000. Biodiversity in the high Paranáriver floodplain. In Gopal, B., W. J. Junk & J. A. Davis (eds), Biodiversity in Wetlands: Assessment, Function and Conservation, 1. Backhuys Publishers, Leiden, The Netherlands, 89–118.Google Scholar
  3. Benassi, R. F. & A. F. M. Camargo, 2000. Avaliação do processo competitivo entre duas espécies de macrófitas aquáticas flutuantes, Pistia stratiotes L. e Salvinia molesta D. S. Mithcell. Revista de Iniciação Científica 1: 59–66.Google Scholar
  4. Bini, L. M., 1996. Influence of flood pulse on the fitomass of three species of aquatic macrophytes in the Upper River Paranáfloodplain. Archives of Biology and Technology 39(3): 715–721.Google Scholar
  5. Camargo, A. F.M. & F.A. Esteves, 1996. Influence of water level variation on biomass and chemical composition of the aquatic macrophyte Eichhornia azurea (Kunth.) in an oxbow lake of the rio Mogi-Guaçu (São Paulo, Brazil). Archiv für Hydrobiologie 135: 423–432.Google Scholar
  6. Gopal, B., 1987. Water Hyacinth. Elsevier, Amsterdam, The Netherlands, 471 pp.Google Scholar
  7. Hill, M. O., 1979. TWINSPAN-A FORTRAN Program for Arranging Multivariate Data in an Ordered Two-Way Table by Classification of the Individuals and Attributes. Section of Ecology and Systematics, Cornell University. Ithaca, New York.Google Scholar
  8. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems In Proceedings of the International Large Rivers Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.Google Scholar
  9. Murphy, K. J., G. Dickinson, S. M. Thomaz, L. M. Bini, K. Dick, K. Greaves, M. Kennedy, S. Livingstone, H. McFerran, J. Milne, J. Oldroyd & R. Wingfield, 2003. Aquatic vegetation of the Upper Rio Paranáfloodplain in Brazil: a functional analysis. Aquatic Botany 77: 257–276.CrossRefGoogle Scholar
  10. Neiff, J. J., 1986. Aquatic plants of the Paranásystem. In Davies, B. R. & K. F. Walker (eds), The Ecology of River Systems. Dr W. Junk Publishers, Dordrecht, The Netherlands, 557–571.Google Scholar
  11. Rubim, M. A. L. & A. F. M. Camargo, 2001. Taxa de crescimento específico da macrófita aquática Salvinia molesta Mitchell em um braço do Rio Preto, Itanhaém, São Paulo. Acta Limnologica Brasiliensia 13(1): 75–83.Google Scholar
  12. Snowden, R. E. D. & B. D. Wheeler, 1993. Iron toxicity to fen plant species. The Journal of Ecology 81: 35–46.CrossRefGoogle Scholar
  13. Thomaz, S. M., M. C. Roberto & L. M. Bini, 1997. Caracterização limnológica dos ambientes aquáticos e influência dos níveis fluviométricos. In Vazzoler, A. E. A. M., A. A. Agostinho & N. S. Hahn (eds), A Planície de Inundação do alto rio Paraná: Aspectos Físicos, Biológicos e Socioeconômicos. Editora da Universidade Estadual de Maringá, Maringá, Brazil, 73–102.Google Scholar
  14. Thomaz, S. M., T. A. Pagioro, L. M Bini & K. J. Murphy, 2002. Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Proc. 11th EWRS Internat. Symp. Aquatic Weeds, Moliets-Maâ France 2002: 197–200.Google Scholar
  15. Ward, J. V. & J. A. Stanford, 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers-Research and Management 11: 105–119.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Judith M. Milne
    • 1
  • Kevin J. Murphy
    • 1
  • Sidinei M. Thomaz
    • 2
  1. 1.IBLS—DEEB, University of GlasgowGlasgowUK
  2. 2.NUPELIA, Universidade Estadual de MaringáMaringáBrasil

Personalised recommendations