Skip to main content

Boron as a Dietary Factor for Bone Microarchitecture and Central Nervous System Function

  • Conference paper

Abstract

Studies by several different research groups using different experimental animals indicate that nutritional amounts of boron beneficially affect bone histomorphological and gross physical characteristics. One of the first studies suggesting that boron is essential for higher animals found that boron improved bone calcification in chicks fed a diet deficient but not completely lacking in vitamin D (Hunt and Nielsen, 1981). At the microscopic level, boron deprivation (0.465 mg/kg diet) exacerbated the distortion of marrow sprouts (location of calcified scaffold erosion and new bone formation) and the delay in initiation of cartilage calcification in bones during marginal vitamin D deficiency (Hunt, 1996).

Keywords

  • Bone Microarchitecture
  • Brightness Discrimination
  • Structural Model Index
  • Boron Deficiency
  • Dietary Fatty Acid Composition

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong T.A., Spears J.W., Crenshaw T.D., and Nielsen F.H., 2000 Boron supplementation of a semipurified diet for weanling pigs improves feed efficiency and bone strength characteristics and alters plasma lipid metabolites. J. Nutr. 130: 2575–2581.

    PubMed  CAS  Google Scholar 

  • Becker C.C. and Kyle D.J., 2001 The importance of DHA in optimal cognitive function in rodents. In Fatty acids: physiological and behavioral functions (D. Mostofsky, S. Yehuda and N. Salem Jr., eds.) Humana Press, Totowa, NJ, pp. 357–375.

    Google Scholar 

  • Eckhert C.D., and Rowe R.I., 1999 Embryonic dysplasia and adult retinal dystrophy in boron-deficient zebrafish. J. Trace Elem. Exp. Med. 12: 213–219.

    CrossRef  CAS  Google Scholar 

  • Fort D.J., Rogers R.L., McLaughlin D.W., Sellers C.M., and Schlekat C.L., 2002 Impact of boron deficiency on Xenopus laevis. A summary of biological effects and potential biochemical roles. Biol. Trace. Elem. Res. 90: 117–142.

    CrossRef  PubMed  CAS  Google Scholar 

  • Hoffman D.R., 2000 Fatty acids and visual dysfunction. In Fatty acids in foods and their health implications (C.K. Chow, ed.) Marcel Dekker, New York, NY, pp. 817–841.

    Google Scholar 

  • Hunt C.D., 1996 Biochemical effects of physiological amounts of dietary boron. J. Trace Elem. Exp. Med. 9: 185–213.

    CrossRef  CAS  Google Scholar 

  • Hunt C.D. and Idso J.P., 1999 Dietary boron as a physiological regulator of the normal inflammatory response: a review and current research progress. J. Trace Elem. Exp. Med. 12: 221–233.

    CrossRef  CAS  Google Scholar 

  • Hunt C.D. and Nielsen F.H., 1981 Interaction between boron and cholecalciferol in the chick. In Trace element metabolism in man and animals (TEMA-4) (J. McCHowell, J.M. Gawthorne and C.L. White, eds.) Australian Academy of Science, Canberra, Australia, pp. 597–600.

    Google Scholar 

  • Hunt C.D. and Shuler T.R., 1990 Open vessel, wet ash, low temperature digestion of biological materials for inductively coupled argon plasma spectroscopy analysis of boron and other elements. J. Micronutr. Anal. 6: 161–174.

    Google Scholar 

  • Johnson W.T., 2005 Copper and brain function. In Nutritional neuroscience (H.R. Lieberman, R.B. Kanarek and C. Prasad, eds.) Taylor & Francis, Boca Raton, pp. 289–305.

    Google Scholar 

  • Miret S., McKie A.T., Sáiz M.P., Bomford A., and Mitjavila M.T., 2003 IRP1 activity and expression are increased in the liver and the spleen of rats fed fish oil-rich diets and are related to oxidative stress. J. Nutr. 133: 999–1003.

    PubMed  CAS  Google Scholar 

  • Moriguchi T. and Salem N. Jr., Recovery of brain docosahexaenoate leads to recovery of spatial task performance. J. Neurochem. 87: 297–309.

    Google Scholar 

  • Nielsen F.H., 1996 Evidence for the nutritional essentiality of boron. J. Trace Elem. Exp. Med. 9: 215–229.

    CrossRef  CAS  Google Scholar 

  • Nielsen F.H., 2004 Dietary fat composition modifies the effect of boron on bone characteristics and plasma lipids in rats. BioFactors 20: 161–171.

    PubMed  CAS  Google Scholar 

  • Nielsen F.H., 2005 Fish oil instead of safflower oil as the dietary fat source modifies the oxidative stress response to boron deficiency in rats. FASEB J. 19: A1705.

    Google Scholar 

  • Nielsen F.H., Penland J.G., and Newman S.M. Jr., 2004 Dietary boron modifies the effect of changing dietary fatty acid composition on rat behavior and eye mitochondrial morphology. FASEB J. 18: A491.

    Google Scholar 

  • Okuyama H., Fujii Y., and Ikemoto A., 2001 Brightness-discrimination learning behavior and retinal function affected by long-term á-linolenic acid deficiency in rat. In Fatty acids: physiological and behavioral functions (D. Mostofsky, S. Yehuda and N. Salem, Jr., eds.) Humana Press, Totowa, NJ, pp. 219–235.

    Google Scholar 

  • Park M., Li Q., Shcheynikov N., Zeng W., and Muallem S., 2004 NaBC1 is a ubiquitous electrogenic Na+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol. Cell 16: 331–341.

    CrossRef  PubMed  CAS  Google Scholar 

  • Pellow S., Chopin P., File S.E., and Briley M., 1985 Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14: 149–167.

    CrossRef  PubMed  CAS  Google Scholar 

  • Penland J.G., 1998 The importance of boron nutrition for brain and psychological function. Biol. Trace Elem. Res. 66: 299–317.

    PubMed  CAS  Google Scholar 

  • Penland J.G. and Prohaska J.R., 2004 Abnormal motor function persists following recovery from perinatal copper deficiency in rats. J. Nutr. 134:1984–1988.

    PubMed  CAS  Google Scholar 

  • Rico H., Crespo E., Hernandez E.R., Seco C., and Crespo R., 2002 Influence of boron supplementation on vertebral and femoral bone mass in rats on strenuous treadmill exercise: a morphometric, densitometric, and histomorphometric study. J. Clin. Densitometry 5: 187–192.

    CrossRef  CAS  Google Scholar 

  • Rossi A.F., Miles R.D., Damron B.L., and Flunker L.K., 1993 Effects of dietary boron supplementation on broilers. Poult. Sci. 72: 2124–2130.

    PubMed  CAS  Google Scholar 

  • Sakaguchi K., Morita I., and Murota S., 1994 Eicosapentaenoic acid inhibits bone loss due to ovariectomy in rats. Prostaglandins Leukot. Essent. Fatty Acids 50: 81–84.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sandstead H.H., Frederickson C.J., and Penland J.G., 2000 History of zinc as related to brain function. J. Nutr. 130: 496S–502S.

    PubMed  CAS  Google Scholar 

  • Schlemmer C.K., Coetzer H., Claassen N., and Kruger M.C., 1999 Oestrogen and essential fatty acid supplementation corrects bone loss due to ovariectomy in the female Sprague Dawley rat. Prostaglandins Leukot. Essent. Fatty Acids 61:381–390.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sheng M.H.-C., Taper L.J., Veit H., Qian H., Ritchey S.J., and Lau K.-H.W., 2001 Dietary boron supplementation enhanced the action of estrogen, but not that of parathyroid hormone, to improve trabecular bone quality in ovariectomized rats. Biol. Trace Elem. Res. 82:109–123.

    CrossRef  PubMed  CAS  Google Scholar 

  • Siegel R.C., 1978 Lysyl oxidase. Int. Rev. Connect. Tiss. Res. 8: 73–118.

    Google Scholar 

  • Tang A.H. and Ho P.M., 1988 Both competitive and non-competitive antagonists of N-methyl-D-aspartic acid disrupt brightness discrimination in rats. Eur. J. Pharmacol. 22: 143–146.

    CrossRef  Google Scholar 

  • Takashi T., Fukumoto Y., and Harada E., 2002 Influence of a dietary n-3 fatty acid deficiency on the cerebral catecholamine contents, EEG and learning ability in rat. Behav. Brain Res. 131:193–203.

    CrossRef  Google Scholar 

  • Tuderman L., Myllylo R., and Kivirikko K.I., 1977 Mechanism of the prolyl hydroxylase reaction. I. Role of co-substrates. Eur. J. Biochem. 80: 341–348.

    CrossRef  PubMed  CAS  Google Scholar 

  • Wallach S., 1990 Effects of magnesium on skeletal metabolism. Magnesium Trace Elem. 9:1–14.

    CAS  Google Scholar 

  • Yavin E., Brand A., and Green P., 2002 Docosahexaenoic acid abundance in the brain: a biodevice to combat oxidative stress. Nutr. Neurosci. 5: 149–157.

    CrossRef  PubMed  CAS  Google Scholar 

  • Yuan Y.V. and Kitts D.D., 2003 Dietary (n-3) fat and cholesterol alter tissue antioxidant enzymes and susceptibility to oxidation in SHR and WKY rats. J. Nutr. 133: 679–688.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Nielsen, F.H., Stoecker, B.J., Penland, J.G. (2007). Boron as a Dietary Factor for Bone Microarchitecture and Central Nervous System Function. In: XU, F., et al. Advances in Plant and Animal Boron Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5382-5_27

Download citation