Skip to main content

Substrate Supply for Cellulose Synthesis and its Stress Sensitivity in the Cotton Fiber

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amor Y., Haigler C.H., Wainscott M., Johnson S., and Delmer D.P. 1995. A membrane-associated form of sucrose synthase and its potential role synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92:9353–9357.

    Article  CAS  Google Scholar 

  • Applequist W.L., Cronn R., and Wendel J.F. 2001. Comparative development of fiber in wild and cultivated cotton. Evol Dev 3:3–17.

    Article  CAS  Google Scholar 

  • Arthur J.C. 1990. Cotton. In: Kroschwitz J.I. (ed.) Polymers: fibers and textiles, a compendium. Wiley, New York, pp. 118–141.

    Google Scholar 

  • Atalla R.H. and VanderHart D.L. 1984. Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285.

    Article  CAS  Google Scholar 

  • Babb V.M. and Haigler C.H. 2001. Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems. Plant Physiol 127:1234–1242.

    Article  CAS  Google Scholar 

  • Baskin T.I. 2001. On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171.

    Article  CAS  Google Scholar 

  • Barratt D.H.P., Barber L., Kruger N.J., Smith A.M., Wang T.L., and Martin C. 2001. Multiple, distinct isoforms of sucrose synthase in pea. Plant Physiol 127:655–664.

    Article  CAS  Google Scholar 

  • Basra A.S. and Malik C.P. 1984. Development of the cotton fiber. Int Rev Cytol 89:65–113.

    Article  CAS  Google Scholar 

  • Basra A.S., Sarlach R.S., Nayyar H., and Malik C.P. 1990. Sucrose hydrolysis in relation to development of cotton (Gossypium spp.) fibres. Indian J Expt Biol 28:985–988.

    CAS  Google Scholar 

  • Benedict C.R., Schubert A.M., and Kohel R.J. 1980. Carbon metabolism in developing cotton seed: sink demand and the distribution of assimilates. Proc. Beltwide Cotton Prod. Res. Conf. National Cotton Council, Memphis, pp. 346–351.

    Google Scholar 

  • Benedict C.R., Kohel R.J., and Jividen. G.M. 1994. Crystalline cellulose and cotton fiber strength. Crop Sci 34:147–151.

    CAS  Google Scholar 

  • Buchala A.J. and Meier, H. 1985. Biosynthesis of ß-glucans in growing cotton (Gossypium arboreum L. and Gossypium hirsutum L.) fibers. In: Brett C.T. and Hillman J.R. (eds.) Biochemistry of plant cell walls. Cambridge University Press, Cambridge, pp. 220–241.

    Google Scholar 

  • Buchala A.J. 1987. Acid β-fructofuranoside fructohydrolase (invertase) in developing cotton (Gossypium arboreum L.) fibres and its relationship to β-glucan synthesis from sucrose fed to the fibre apoplast. J Plant Physiol 127:219–230.

    CAS  Google Scholar 

  • Buchala A.J. 1999. Noncellulosic carbohydrates in cotton fibers. In: Basra A.S. (ed.) Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing, The Haworth Press, New York, pp. 113–136.

    Google Scholar 

  • Burk D.H. and Ye Z.-H. 2002. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule severing protein. Plant Cell 14:2145–2160.

    Article  CAS  Google Scholar 

  • Carpita N.C. and Delmer D.P. 1981. Concentration and metabolic turnover of UDP-Glucose in developing cotton fibers. J Biol Chem 256:308–315.

    CAS  Google Scholar 

  • Chanzy H., Imada K., and Vuong R. 1978. Electron diffraction from the primary wall of cotton fibers. Protoplasma 94:299–306.

    Article  Google Scholar 

  • Chourey P.S., Taliercio E.W., Carlson S.J., and Ruan Y.L. 1998. Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol Gen Genet 259:88–96.

    Article  CAS  Google Scholar 

  • Cronn R.C., Small R.L., and Wendel J.F. 1999. Duplicated genes evolve independently after polyploid formation in cotton. Proc Natl Acad Sci USA 96:14406–14411.

    Article  CAS  Google Scholar 

  • Davidonis G. 1993. Cotton fiber growth and development in vitro: effects of tunicamycin and monensin. Plant Sci 88:229–236.

    Article  CAS  Google Scholar 

  • DeLanghe E.A.L. 1986. Lint development. In: Mauney J.R. and Stewart J. McD. (eds.) Cotton Physiology. The Cotton Foundation, Memphis, TN, pp. 325–350.

    Google Scholar 

  • Delmer D.P. 1999. Cellulose biosynthesis in developing cotton fibers. In: Basra A.S. (ed.) Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing. The Haworth Press, New York, pp. 85–112.

    Google Scholar 

  • Delmer D.P. and Haigler C.H. 2002. The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metabolic Eng 4:22–28.

    Article  CAS  Google Scholar 

  • DiNiro M.J. and Cooper L.W. 1989. Post-photosynthetic modification of oxygen isotope ratios of carbohydrates in the potato: implications for paleoclimatic reconstruction based upon isotopic analysis of wood cellulose. Geochimica et Cosmochimica Acta 53:2573–2580.

    Article  Google Scholar 

  • Dixon D.C., Seagull R.W., and Triplett B.A. 1994. Changes in the accumulation of a- and ß-tubulin isotypes during cotton fiber development. Plant Physiol 105:1347–1353.

    CAS  Google Scholar 

  • Doblin M.S., Kurek K., Jacob-Wilk D., and Delmer D.P. 2002. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420.

    Article  CAS  Google Scholar 

  • Doehlert D.C. 1987. Substrate inhibition of maize endosperm sucrose synthase by fructose and its interaction with glucose inhibition. Plant Sci 52:153–157.

    Article  CAS  Google Scholar 

  • Franz G. 1969. Soluble nucleotides in growing cotton hair. Phytochem 8:737–741.

    Article  CAS  Google Scholar 

  • Gipson J.R. 1986. Temperature effects on growth, development, and fiber properties. In: Mauney J.R. and Stewart J. McD. (eds.) Cotton Physiology. The Cotton Foundation, Memphis, TN, pp. 47–56.

    Google Scholar 

  • Haigler C.H. and Brown, Jr. R.M., 1986. Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134:111–120.

    Article  Google Scholar 

  • Haigler C.H., Rao N.R., Roberts E.M., Huang J.Y., Upchurch D.P., and Trolinder N.L. 1991. Cultured cotton ovules as models for cotton fiber development under low temperatures. Plant Physiol 95:88–96.

    Article  CAS  Google Scholar 

  • Haigler C.H., Taylor J.G., and Martin L.K. 1994. Temperature dependence of fiber cellulose biosynthesis: Impact on fiber maturity and strength. In: Proceedings of the Biochemistry of Cotton Workshop, Galveston, TX, September 28–30. Cotton Inc., Raleigh, NC, pp. 95–100.

    Google Scholar 

  • Haigler C.H., Cai W., Martin L.K., Tummala J., Anconetani R., Gannaway J.G., Jividen G.J., and Holaday A.S. 2000. Mechanisms by which fiber quality and fiber and seed weight can be improved in transgenic cotton growing under cool night temperatures. Proc Beltwide Cotton Conference, National Cotton Council, Memphis, p. 483.

    Google Scholar 

  • Haigler C.H., Ivanova-Datcheva M., Hogan P.S., Salnikov V.V., Hwang S., Martin L.K., and Delmer D.P. 2001. Carbon partitioning to cellulose synthesis. Plant Mol Biol 47:29–51.

    Article  CAS  Google Scholar 

  • Hannah L.C., Frommer W., Su J.-C., Chourey P., and Park W. 1994. Sucrose synthases. Plant Mol Biol Rep 12:S72.

    Article  CAS  Google Scholar 

  • Hauch S. and Magel E. 1998. Extractable activities and protein content of sucrose-phosphate synthase, sucrose synthase, and neutral invertase in trunk tissue of Robinia pseudoacacia L. are related to cambial wood production and heartwood formation. Planta 207:266–274.

    Article  CAS  Google Scholar 

  • Hayashi T., Read S.M., Bussell J., Thelen M., Lin F.-C., Brown, Jr. R.M., and Delmer D.P. 1987. UDP-glucose: (1→3)-ß-glucan synthase from mung bean and cotton. Plant Physiol 83:1054–1062.

    Article  CAS  Google Scholar 

  • Hendrix D.L. 1990. Carbohydrates and carbohydrate enzymes in developing cotton ovules. Physiol Plant 78:85–92.

    Article  CAS  Google Scholar 

  • Herth W. 1989. Inhibitor effects on putative cellulose synthetase complexes of vascular plants. In: Schuerch C. (ed.) Cellulose and Wood: Chemistry and Technology. Wiley, New York, pp. 795–810.

    Google Scholar 

  • Hertzberg M., Aspeborg H., Schrader J., Andersson A., Erlandsson R., Blomqvist K., Bhalerao R., Uhlen M. Teeri T.T., Lundeberg J., Sundberg B., and Nilsson P. 2001. A transcriptional road map to wood formation. Proc Natl Acad Sci 98:14732–14737.

    Article  CAS  Google Scholar 

  • Hill S.A., Waterhouse J.S., Field E.M., Switsur V.R., and Rees A.P.T. 1995. Rapid recycling of triose phosphates in oak stem tissue. Plant Cell Environment 18:931–936.

    Article  CAS  Google Scholar 

  • Hsieh Y.L. 1999. Structural development of cotton fibers and linkages in fiber quality, In: Basra A.S. (ed.) Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing. The Haworth Press, New York, pp. 137–166.

    Google Scholar 

  • Hu X.P. and Hsieh Y.L. 1996. Crystalline structure of developing cotton fibers. J Polym Sci: Part B: Polymer Physics 34:1451–1459.

    Article  CAS  Google Scholar 

  • Huber S.C. and Huber J.L. 1996. Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:431–444.

    Article  CAS  Google Scholar 

  • Jaquet J.P., Buchala A.J., and Meier H. 1982. Changes in the non-structural carbohydrate content of cotton (Gossypium spp.) fibres at different stages of development. Planta 156:481–486.

    Article  CAS  Google Scholar 

  • Kanabus J., Bressan R.A., and Carpita N.C. 1986. Carbon assimilation in carrot cells in liquid culture. Plant Physiol 82:363–368.

    Article  CAS  Google Scholar 

  • Kim H.J. and Triplett B.A. 2001. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366.

    Article  CAS  Google Scholar 

  • Kimura S., Laosinchai W., Itoh T., Cui X., Linder R., and Brown, Jr., R.M., 1999. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2085.

    Article  CAS  Google Scholar 

  • Kloth R.H. 1989. Changes in the level of tubulin subunits during development of cotton (Gossypium hirsutum) fiber. Physiol Plant 76:37–41.

    Article  CAS  Google Scholar 

  • Kohel R.J., Benedict C.R., and Jividen G.M. 1993. Incorporation of 14C-glucose into crystalline cellulose in aberrant fibers of mutant cotton. Crop Sci 33:1036–1040.

    CAS  Google Scholar 

  • Kudlicka K. and Brown, Jr. R.M., 1997. Cellulose and callose biosynthesis in higher. I. Solubilization and separation of (1→3)- and (1→4)-β-glucan synthase activities from mung bean. Plant Physiol 115:643 –656. plants.

    Article  CAS  Google Scholar 

  • Kudlicka K., Brown, Jr. R.M., Li L., Lee J.H., Shin H., and Kuga S. 1995. β-glucan synthesis in the cotton fiber. IV. In vitro assembly of the cellulose I allomorph. Plant Physiol 107:111–123.

    CAS  Google Scholar 

  • Kurek I., Kawagoe Y., Jacob-Wilk D., Doblin M., and Delmer D. 2002. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc binding domains. Proc Natl Acad Sci 99:11109–11104.

    Article  CAS  Google Scholar 

  • Kutschera U. and Heiderich A. 2002. Sucrose metabolism and cellulose biosynthesis in sunflower hypocotyls. Phys Plant 114:372–379.

    Article  CAS  Google Scholar 

  • Lai-Kee-Him J., Chanzy H., Müller M., Putaux J.L., Imai T., and Bulone V. 2002. In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J Biol Chem 277:36931–36939.

    Article  CAS  Google Scholar 

  • Laosinchai W., Cui X., and Brown, Jr. R.M., 2000. A full-length cDNA of cotton cellulose synthase has high homology with the Arabidopsis RSW1 gene and the cotton CelA1 gene (PGR 00–002). Plant Physiol 122:291.

    Article  Google Scholar 

  • Liu B., Brubaker C.L., Mergeai G., Cronn R.C., and Wendel J.F. 2001. Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330.

    Article  CAS  Google Scholar 

  • Lunn J.E. and MacRae E. 2003. New complexities in the synthesis of sucrose. Curr Op Plant Biol 6:208–214.

    Article  CAS  Google Scholar 

  • Martin L.K. and Haigler C.H. 2004. Cool temperature hinders flux from glucose to sucrose during secondary wall synthesis in secondary wall stage cotton fibers. Cellulose 11:339–349.

    Article  CAS  Google Scholar 

  • Matthysse A.G., White S., and Lightfoot R. 1995a. Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177:1069–1075.

    CAS  Google Scholar 

  • Matthysse A.G., Thomas D.O.L., and White A.R. 1995b. Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177:1076–1081.

    CAS  Google Scholar 

  • Meinert M.C. and Delmer D.P. 1977. Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol 59:1088–1097.

    Article  CAS  Google Scholar 

  • Mutsaers H.J.W. 1976. Growth and assimilate conversion of cotton bolls (Gossypium hirsutum L.) 1. Growth of fruits and substrate demand. Ann Bot 40:301–315.

    CAS  Google Scholar 

  • Nguyen-Quoc B. and Foyer C.H. 2001. A role for futile cycles involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J Expt Bot 52:881–889.

    Article  CAS  Google Scholar 

  • Odanaka S., Bennett A.B., and Kanayama Y. 2002. Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato. Plant Phys 129:1119–1126.

    Article  CAS  Google Scholar 

  • O’Sullivan A.C. 1997. Cellulose: the structure slowly unravels. Cellulose 4:173–207.

    Article  Google Scholar 

  • Pear J., Kawagoe Y., Schreckengost W., Delmer D.P., and Stalker D. 1996. Higher plants contain homologs of the CelA genes that encode the catalytic subunit of the bacterial cellulose synthases. Proc Natl Acad Sci USA 93:12637–12642.

    Article  CAS  Google Scholar 

  • Peng L., Kawagoe Y., Hogan P., and Delmer D. 2001a. Sitosterol-ß-glucoside as primer for cellulose synthesis in plants. Science 295:147–150.

    Article  Google Scholar 

  • Peng L., Xian F., Roberts E., Kawagoe Y., Greve L.C., Kreuz K., and Delmer D.P. 2001b. The experimental herbicide CGA 325′615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline β-1,4-glucan associated with CesA protein. Plant Physiol 126:981–992.

    Article  CAS  Google Scholar 

  • Pettigrew W.T. 1994. Source-to-sink manipulation effects on cotton fiber quality. Agron J 87:947–952.

    Google Scholar 

  • Pillonel C. and Meier H. 1985. Influence of external factors on callose and cellulose synthesis during incubation in vitro of intact cotton fibers with [14C]sucrose. Planta 165:76–84.

    Article  CAS  Google Scholar 

  • Pillonel C., Buchala A.J., and Meier H. 1980. Glucan synthesis by intact cotton fibres fed with different precursors at the stages of primary and secondary wall formation. Planta 149:306–312.

    Article  CAS  Google Scholar 

  • Potikha T.S., Collins C.C., Johnson D.I., Delmer D.P., and Levine A. 1999. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol 119:849–858.

    Article  CAS  Google Scholar 

  • Ramey H.H., Jr. 1986. Stress influences on fiber development. In: Mauney J.R. and Stewart J. McD. (eds.) Cotton Physiology. The Cotton Foundation, Memphis, TN, pp. 351–360.

    Google Scholar 

  • Rebenfield L. 1990. Fibers. In: Kroschwitz J.I. (ed.) Polymers: Fibers and Textiles: A Compendium. Wiley, New York, pp. 219–305.

    Google Scholar 

  • Roberts E.M., Nunna R.R., Huang J.Y., Trolinder N.L., and Haigler C.H. 1992. Effects of cycling temperatures on fiber metabolism in cultured cotton ovules. Plant Physiol 100:979–986.

    Article  CAS  Google Scholar 

  • Rollit J. and Maclachlan G.A. 1974. Synthesis of wall glucan from sucrose by enzyme preparations from Pisum sativum. Phytochem 13:367–374.

    Article  CAS  Google Scholar 

  • Ruan Y.-L., Chourey P.S., Delmer D.P., and Perez-Grau L. 1997. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed. Plant Physiol 115:375–385.

    CAS  Google Scholar 

  • Ruan Y.-L., Llewellyn D.J., and Furbank R.T. 2003. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. The Plant Cell 15:952–964.

    Article  CAS  Google Scholar 

  • Ryser U. 1985. Cell wall biosynthesis in differentiating cotton fibres. Eur J Cell Biol 39:236–256.

    CAS  Google Scholar 

  • Ryser U. 1992. Ultrastructure of the epidermis of developing cotton (Gossypium) seeds: Suberin, pits, plasmodesmata, and their implications for assimilate transport into cotton fibers. Amer J Bot 79:14–22.

    Article  Google Scholar 

  • Ryser U. 1999. Cotton fiber initiation and histodifferentiation. In: Basra A.S. (ed.) Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing, The Haworth Press, New York, pp. 1–46.

    Google Scholar 

  • Salnikov V.V., Grimson M.J., Delmer D.P., and Haigler C.H. 2001. Sucrose synthase localizes to cellulose synthesis sites in tracheary elements. Phytochem 57:823–833.

    Article  CAS  Google Scholar 

  • Salnikov V., Grimson M.J., Seagull R.W., and Haigler C.H. 2003. Localization of sucrose synthase and callose in freeze substituted, secondary wall stage, cotton fibers. Protoplasma 221:175–184.

    CAS  Google Scholar 

  • Shimizu Y., Aotsuka S., Hasegawa O., Kawada T., Sakuno T., Sakai F., and Hayashi T. 1997. Changes in levels of mRNA for cell wall-related enzymes in growing fiber cells. Plant Cell Physiol 38:375–378.

    CAS  Google Scholar 

  • Schrader S. and Sauter J.J. 2002. Seasonal changes of sucrose-phosphate synthase and sucrose synthase activities in poplar wood (Populus x Canadensis Moench robusta) and their possible role in carbohydrate metabolism. J Plant Physiol 159:833–843.

    Article  CAS  Google Scholar 

  • Schubert A.M., Benedict C.R., Gates C.E., and Kohel R.J. 1976. Growth and development of the lint fibers of Pima S-4 cotton. Crop Sci 16:539–543.

    Article  Google Scholar 

  • Seagull R.W. 1986. Changes in microtubule organization and wall microfibril orientation during in vitro cotton fiber development: an immunofluorescent study. Can J Bot 64:1373–1381.

    Article  Google Scholar 

  • Seagull R.W. 1992. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development. J Cell Sci 101:561–577.

    Google Scholar 

  • Seagull R.W. 1993. Cytoskeletal involvement in cotton fiber growth and development. Micron 24:643–660.

    Article  Google Scholar 

  • Seagull R.W. 1995. Cotton fiber growth and development: evidence for tip synthesis and intercalary growth in young fibers. Plant Physiol (Life Sci Adv) 14:27–38.

    Google Scholar 

  • Subbaiah C.C. and Sachs M.M. 2001. Altered patterns of sucrose synthase phophorylation and localization precede callose induction and root tip death in anoxic maize seedlings. Plant Physiol 125:585–594.

    Article  CAS  Google Scholar 

  • Taylor M.A., Ross H.A., McRae D., Stewart D., Roberts I., Duncan G., Wright F., Millam S., and Davies H.V. 2000. A potato.-glucosidase gene encodes a glycoprotein-processing–glucosidase II-like activity. Demonstration of enzyme activity and effects of down-regulation in transgenic plants, Plant J 24:305–316.

    Article  CAS  Google Scholar 

  • Thaker V.S., Saroop S., Vaishnav P.P., and Singh Y.D. 1989. Genotypic variations and influence of diurnal temperature on cotton fiber development. Field Crops 22:1–13.

    Article  Google Scholar 

  • Timpa J.D. 1992. Molecular chain length distributions of cotton fiber: developmental, varietal, and environmental influences. In: Benedict C.R. (ed.) Proceedings of cotton fiber cellulose: structure, function, and utilization conference. National Cotton Council, Memphis, TN, pp. 199–210.

    Google Scholar 

  • Timpa J.D. and Wanjura D.F. 1989. Environmental stress responses in molecular parameters of cotton cellulose. In Schuerch C. (ed.) Cellulose and Wood—Chemistry and Technology. Wiley, New York, pp. 1145–1156.

    Google Scholar 

  • Timpa J.D. and Triplett B.A. 1993. Analysis of cell-wall polymers during cotton fiber development. Planta 189:101–108.

    Article  CAS  Google Scholar 

  • Triplett B.A. 1993. Using biotechnology to improve cotton fiber quality: progress and perspectives, In: Cellulosics: Pulp, Fibre, and Environmental Aspects. Ellis Horwood, Chichester, UK, pp. 135–140.

    Google Scholar 

  • Triplett B.A. 1998. Stage-specific inhibition of cotton fiber development by adding a-amanitin to ovule cultures. In vitro cell dev biol-plant 34:27–33.

    Article  CAS  Google Scholar 

  • Tummala J. 1996. Response of sucrose phosphate synthase activity to cool temperatures in cotton. M.S. thesis, Texas Tech University, Lubbock, TX.

    Google Scholar 

  • Waffler U. and Meier H. 1994. Enzyme activities in developing cotton fibres. Plant Physiol Biochem 32:697–702.

    Google Scholar 

  • Wagner K.G. and Backer A.I. 1992. Dynamics of nucleotides in plants studied on a cellular basis. In: Jeon K.W. and Friedlander M. (eds.) International Review of Cytology: A Survey of Cell Biology. Academic Press, San Diego, CA, pp. 1–84.

    Google Scholar 

  • Wartelle L.H., Bradow J.M., Hinojasa O., Pepperman A.B., Sassenrath-Cole G.F., and Dastoor P. 1995. Quantitative cotton fiber maturity measurements by x-ray fluorescence spectroscopy and AFIS. J Agric Food Chem 43:1219–1223.

    Article  CAS  Google Scholar 

  • Waterkeyn L. 1981. Cytochemical localization and function of the 3-linked glucan callose in the developing cotton fibre cell wall. Protoplasma 106:49–60.

    Article  CAS  Google Scholar 

  • Wendel J.F., Small R.L., Cronn R.C., and Brubaker C.L. 1999. Genes, jeans, and genomes: reconstructing the history of cotton. In: van Raamsdonk L.W.D. and denNijs J.C.M. (eds.) Plant Evolution in Man-Made Habitats: Proceedings of the VIIth Symposium, IOPB. Hugo de Vries Laboratory, Amsterdam, pp. 133–159.

    Google Scholar 

  • Williamson R.E., Burn J.E., and Hocart C.H. 2001. Cellulose synthesis: mutational analysis and genomic perspectives using Arabidopsis thaliana. Cell Mol Life Sci 58:1–16.

    Article  Google Scholar 

  • Willison J.H.M. 1983. The morphology of supposed cellulose-synthesizing structures in higher plants. J Appl Polym Sci: Appl Polym Symp 37:91–105.

    CAS  Google Scholar 

  • Willison J.H.M. and Brown, Jr. R.M. 1977. An examination of the developing cotton fiber: wall and plasmalemma. Protoplasma 92:21–41.

    Article  Google Scholar 

  • Winter H. and Huber S.C. 2000. Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19:31–67.

    Article  CAS  Google Scholar 

  • Winter H., Huber J.L., and Huber S.C. 1998. Identification of sucrose synthase as an actin-binding protein. FEBS Lett 430:205–208.

    Article  CAS  Google Scholar 

  • Yakir D. and DiNiro M.J. 1990. Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L. Plant Physiol 93:325–352.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Haigler, C.H. (2007). Substrate Supply for Cellulose Synthesis and its Stress Sensitivity in the Cotton Fiber. In: Brown, R.M., Saxena, I.M. (eds) Cellulose: Molecular and Structural Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5380-1_9

Download citation

Publish with us

Policies and ethics