Biogenesis and Function of Cellulose in the Tunicates

  • Satoshi Kimura
  • Takao Itoh


Cellulose Microfibril Cellulose Synthesis Cellulosic Structure Cellulose Biosynthesis Terminal Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belton P.S., Tanner S.F., Cartier N., and Chanzy H. 1989. High-resolution solid-state 13C nuclear magnetic resonance spectroscopy of tunicin, animal cellulose. Macromolecules 22:1615–1617.CrossRefGoogle Scholar
  2. Berrill N.J. 1950. The Tunicata. The Ray Society, London.Google Scholar
  3. Brown, Jr. R.M. 1969. Observations on the relationship of the Golgi apparatus to wall formation in the marine Chrysophycean alga, Pleurochrysis scherfferii Pringsheim. J Cell Biol 41:109–123.CrossRefGoogle Scholar
  4. Brown, Jr. R.M. 1996. The biosynthesis of cellulose. Pure Appl Chem 10:1345–1373.Google Scholar
  5. Cloney R.A. and Cavey M.J. 1982. Ascidian larval tunic: extra-embryonic structures influence morphogenesis. Cell Tissue Res 222:547–562.CrossRefGoogle Scholar
  6. Cloney R.A. and Grimm L. 1970. Transcellular emigration of blood cells during ascidian metamophosis. Z Zellforsch 107:157–173.CrossRefGoogle Scholar
  7. Daele V.Y., Revol J.-F., Gaill F., and Gofinet G. 1992. Characterization and supermolecular architecture of the cellulose-protein fibrils in the tunic of the sea peach (Halocynthia papollosa, Ascidiacea, Urochordata). Biol Cel 76:87–96.CrossRefGoogle Scholar
  8. Deck J.D., Hey E.D., and Revol J.-P. 1966. Fine structure and origin of the tunic of Perophora viridis. J Morphol 120:267–280.CrossRefGoogle Scholar
  9. Dehal P., Satou Y., Campbell R.K., Chapman J., Degnan B., DeTomaso A., Davidson B., DiGregorio A., Gelpke M., and Goodstein D.M., et al. 2002. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167.CrossRefGoogle Scholar
  10. Dilly P.N. 1969. The ultrastructure of the tadpole larva of Ciona intestinalis. Z Zellforsch 95:331–346.CrossRefGoogle Scholar
  11. Endean R. 1955a. Studies of the blood and test of some Australian ascidians. II The test of Pyura stlonifera (Heller). Aust J Mar Freshw Res 6:139–156.CrossRefGoogle Scholar
  12. Endean R. 1955b. Studies of the blood and test of some Australian ascidians. III The formation of the test of Pyura stlonifera. Aust J Mar Freshw Res 6:157–164.CrossRefGoogle Scholar
  13. Endean R. 1961. The test of the ascidian, Phalusia mammillata. Q J Microsc Sci 102:107–117.Google Scholar
  14. Flood P.R. and Deibel D. 1998. The appendicularian house. In: Bone Q. (ed.), The Biology of Pelagic Tunicates. Oxford University Press, Oxford, pp 105–124.Google Scholar
  15. George W.C. 1939. A comparative study of the blood of the tunicates. Q J Microsc Sci 81:391–428.Google Scholar
  16. Goodbody I. 1974. The physiology of ascidian. Adv Mar Biol 12:1–149.CrossRefGoogle Scholar
  17. Grimson M.J., Haigler C.H., and Blanton R.L. 1996. Cellulose microfibrils, cell motility, and plasma membrane protein organization change in parallel during culmination in Dictyostelium discoideum. J Cell Sci 109:3079–3087.Google Scholar
  18. Helbert W., Sugiyama J., Kimura S., and Itoh T. 1998a. High-resolution electron microscopy on ultrathin sections of cellulose microfibrils generated by glomerulocytes in Polyzoa vesicuriphora. Protoplasma 203:84–90.CrossRefGoogle Scholar
  19. Helbert W., Nishiyama Y., Okano T., and Sugiyama J. 1998b. Molecular imaging of Halocynthia papillosa cellulose. J Strct Biol 124:42–50.CrossRefGoogle Scholar
  20. Hirose E., Kimura S., Itoh T., and Nishikawa J. 1999. Tunic of pyrosomas, doliolids and salps (Thaliacea, Urochordata): morphology and cellulosic components. Biol Bull 196:113–120.CrossRefGoogle Scholar
  21. Hirose E. and Mukai H. 1992. An ultrastructural study on the origin of glomerulocytes, a type of blood cell in a styelid ascidian, Polyandrocarpa misakiensis. J Morphol 211:269–273.CrossRefGoogle Scholar
  22. Katow H. and Watanabe H. 1978. Fine structure and possible role of ampullae on tunic supply and attachment in compound ascidian, Botryllus primigenus OKA. J Ultrastruct Res 64:23–34.CrossRefGoogle Scholar
  23. Kimura, S. and Itoh, T. 1995. Evidence for the role of glomerulocyte in cellulose synthesis in the tunicate, Metandrocarpa uedai. Protoplasma 186:24–33.CrossRefGoogle Scholar
  24. Kimura S. and Itoh T. 1996. New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose biosynthesis in the tunicate Metandrocarpa uedai. Protoplasma 194:151–163.CrossRefGoogle Scholar
  25. Kimura S. and Itoh T. 1997. Cellulose network of hemocoel in selected compound styelid ascidians. J Electron Microsc 46:327–335.Google Scholar
  26. Kimura S. and Itoh T. 1998. A new cellulosic structure, the tunic cord in the ascidian Polyandrocarpa misakiensis. Protoplasma 204:94–102.CrossRefGoogle Scholar
  27. Kimura S. and Itoh T. 2005. Cellulose synthesizing terminal complexes in the ascidians. Cellulose 11:377–383.CrossRefGoogle Scholar
  28. Kimura S., Ohshima C., Hirose E., Nishikawa J., and Itoh T. 2001. Cellulose in the house of the appendicularian Oikopleura rufescens. Protoplasma 216:71–74.CrossRefGoogle Scholar
  29. Matthysse A.G., Deschet K., Williams M., Marry M., White A.R., and Smith W.C. 2003. Proc Natl Acad Sci USA 101:986–991.CrossRefGoogle Scholar
  30. Millar R.H. 1951. The stolonic vessels of the Didemnidae. Q J Microsc Sci 92:249–254.Google Scholar
  31. Mukai H., Hashimoto K., and Watanabe H. 1990. Tunic cords, glomerulocytes, and eosinophilic bodies in a styelid ascidian, Polyandrocarpa misakiensis. J Morphol 206:197–210.CrossRefGoogle Scholar
  32. Nakashima K., Yamada L., Satou Y., Azuma J., and Satoh N. 2004. The evolutionary origin of animal cellulose synthase. Dev Genes Evol 214:81–88.CrossRefGoogle Scholar
  33. Okamoto T., Sugiyama J., and Itoh T. 1996. Structural diversity of ascidian cellulose. Wood Res 83:27–29.Google Scholar
  34. Rånby B.G. 1952. Physico-chemical investigations on animal cellulose (Tunicin). Arkiv Kemi 4:241–248.Google Scholar
  35. Richmond P.A. 1991. Occurrence and functions of native cellulose. In: Haigler C.H. and Weimer P.J. (eds.), Biosynthesis and Biodegradation of Cellulose. Marcel Dekker, New York, pp. 5–23.Google Scholar
  36. Robinson W.E., Kustin K., and Mcleod G.C. 1983. Incorporation of [14C] glucose into the tunic of the ascidian, Ciona intestinalis (Linnaeus). J Expl Zool 225:187–195.CrossRefGoogle Scholar
  37. Romanovicz D.K. 1982. The role of Golgi apparatus in the biosynthesis of natural polymer systems with particular reference to cellulose. In: Brown, Jr. R.M. (ed.), Cellulose and other Natural Polymer Systems. Plenum Press, New York, pp. 127–148.Google Scholar
  38. Sasakura Y., Nakashima K., Awazu S., Matsuoka T., Nakayama A., Azuma J., and Satoh N. 2005. Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis. Proc Natl Acad Sci USA 102:15134–15139.CrossRefGoogle Scholar
  39. Smith M.J. 1970. The blood cells and tunic of the ascidian Halocynthia aurantium (Pallas). I. Hematology, tunic morphology, and partition of cells between blood and tunic. Biol Bull 138:354–378.CrossRefGoogle Scholar
  40. Stievenart J. 1971. Recherches sur la morphologie et etude histochimique de la tunique d’ Halocynthia papillosa Gun. Annales de la Societe Royale Zoologique de Belgique 101:25–56.Google Scholar
  41. Terakado K. 1970. Tunic formation in the larva of an ascidian, Perophora orientalis. Sci Rep Saitama Univ 5B:183–191.Google Scholar
  42. Torrence S.A. and Cloney R.A. 1981. Rhythmic contraction of the ampullar epidermis during metamorphosis of the ascidian Molgura occidentalis. Cell Tissue Res 216:293–312.CrossRefGoogle Scholar
  43. Updegraff. D.M. 1969. Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424.CrossRefGoogle Scholar
  44. Wada H. 1998. Evolutionary history of free-swimming and sessile lifestyles in urochordates as deduced from 18S rDNA molecular phylogeny. Mol Biol Evol 15:1189–1194.Google Scholar
  45. Wada H. and Satoh N. 1994. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18SrDNA. Proc Natl Acad Sci USA 91:1801–1804.CrossRefGoogle Scholar
  46. Wardrop A.B. 1970. The structure and formation of test of Pyura stolonifera (Tunicate). Protoplasma 70:73–86.CrossRefGoogle Scholar
  47. Yamamoto H., Horii F., and Hirai A. 1989. Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acid solutions at high temperatures. Macromolecules 22:4130–4132.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Satoshi Kimura
    • 1
  • Takao Itoh
    • 2
  1. 1.Graduate School of Agriculture and Life Science, Department of BiomaterialsThe University of TokyoBunkyo-kuJapan
  2. 2.Research Institute for Sustainable HumanosphereKyoto UniversityJapan

Personalised recommendations