Skip to main content

Applications of Quantitative ESR

  • Chapter
  • First Online:
Principles and Applications of ESR Spectroscopy

Abstract

ESR applications concerned with the measurement of the amount of paramagnetic species are the common theme of the chapter. Procedures to obtain absolute concentrations are outlined. Error sources are discussed and procedures to reduce the uncertainties are reviewed. The principles of ESR-dosimetry are presented. Strategies to increase the dose response by using materials other than L-alanine, by isotopic substitution, metal ion doping, and instrumental developments are briefly described. The measurement of the spatial distribution of radiation dose by the ESR imaging (ESRI) method is discussed. Geological dating by ESR using the additive dose method is applicable for periods up to two million years. Procedures to estimate doses by ESR in contaminated areas and after radiological accidents are described as well as ESR analyses for test of irradiated food and of medical equipment. Methods to analyze the ESR line-shapes are considered in the context of obtaining the integrated spectral intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Foerster: Z. Naturforsch. 15a, 1079 (1960).

    CAS  Google Scholar 

  2. M.L. Randolph: In ‘Biological Applications of Electron Spin Resonance’ ed. by H.M. Swartz, J.R. Bolton, D.C. Borg, Wiley, New York, NY (1972), p. 119.

    Google Scholar 

  3. R. Aasa, T. Vänngård: J. Magn. Reson. 19, 308 (1975).

    CAS  Google Scholar 

  4. G.A. Yordanov, V. Gancheva: In ‘EPR of Free Radicals in Solids’ ed. by A. Lund, M. Shiotani, Kluwer Academic Publishers, Dordrecht (2003), Chapter 14.

    Google Scholar 

  5. S.Ya. Pshezhetskii, A.G. Kotov, V.K. Milinchuk, V.A. Roginski, V.I. Tupilov: ‘EPR of Free Radicals in Radiation Chemistry’, Wiley, New York, NY (1974).

    Google Scholar 

  6. D.T. Burns, B.D. Flockhart: Phil. Trans. R. Soc. Lond. A 333, 37 (1990).

    Google Scholar 

  7. D.F. Regulla, U. Deffner: Int. J. Appl. Radiat. Isot. 33, 1101 (1982).

    Article  CAS  Google Scholar 

  8. M. Ikeya: ‘New Applications of Electron Paramagnetic Resonance, Dating, Dosimetry and Microscopy’, World Scientific, Singapore (1993).

    Google Scholar 

  9. Xenon: Spin Counting, http://www.bruker-biospin.com/spincount.html

  10. J.A.Weil, J.R. Bolton: ‘Electron Paramagnetic Resonance: Elementary Theory and Practical Applications’, 2nd Edition, Wiley, New York, NY (2007).

    Google Scholar 

  11. M. Iwasaki: J. Magn. Reson. 16, 417 (1974).

    CAS  Google Scholar 

  12. V.Yu. Nagy: Anal. Chim. Acta 339, 1 (1997).

    Google Scholar 

  13. S.S. Eaton, G.R. Eaton: Bull. Magn. Reson. 1, 130 (1979.

    Google Scholar 

  14. V. Nagy: Appl. Radiat. Isot. 52, 1039 (2000).

    Article  CAS  Google Scholar 

  15. G.R. Eaton, S.S. Eaton, D. Barr, R. Weber: ‘Quantitative EPR, A Practitioners Guide’, Wien, New York, Springer, Wien, New York (2010).

    Google Scholar 

  16. L.A. Bljumenfeld, W.W. Wojewodski, A.G. Semjonov: ‘Die Anwendung der paramagetischen Resonanz in der Chemie’, Akademische Verlagsgesellschaft, Geest & Portig, Leipzig (1966).

    Google Scholar 

  17. P.B. Ayscough: ‘Electron Spin Resonance in Chemistry’, Methuen & Co Ltd., London (1967).

    Google Scholar 

  18. C.P. Poole, H.C. Farach: ‘Handbook of Electron Spin Resonance’, American Institute of Physics Press, New York, NY (1994).

    Google Scholar 

  19. R. Zamoramo-Ulloa, H. Flores-Llamas, H. Yee-Madeira: J. Phys. D: Appl. Phys. 25, 1528 (1992).

    Article  Google Scholar 

  20. A. Lund, S. Olsson, M. Bonora, E. Lund, H. Gustafsson: Spectrochim. Acta A 58, 1301 (2002).

    Article  CAS  Google Scholar 

  21. (a) T.A. Vestad, E. Malinen, A. Lund, E.O. Hole, E. Sagstuen: Appl. Radiat. Isot. 59, 181 (2003). (b) T.A. Vestad, H. Gustafsson, A. Lund, E.O. Hole, E. Sagstuen: Phys. Chem. Chem. Phys. 6, 3017 (2004). (c) T.A. Vestad: ‘On the development of a solid-state, low dose EPR dosimeter for radiotherapy’, Dissertation, University of Oslo (2005).

    Article  CAS  Google Scholar 

  22. (a) I. Miyagawa, W.J. Gordy: Chem. Phys. 32, 255 (1960). (b) I. Miyagawa, K. Itoh: J. Chem. Phys. 36, 2157 (1962).

    CAS  Google Scholar 

  23. E. Sagstuen, E.O. Hole, S.R. Haugedal, W.H. Nelson: J. Phys. Chem. 101, 9763 (1997).

    Article  CAS  Google Scholar 

  24. E. Sagstuen, A. Sanderud, E.O. Hole: Radiat. Res. 162, 112 (2004).

    Article  CAS  Google Scholar 

  25. P.-O. Samskog, G. Nilsson, A. Lund, T. Gillbro: J. Phys. Chem. 84, 2819 (1980).

    Article  Google Scholar 

  26. W.W. Bradshaw, D.G. Cadena, G.W. Crawford, H.A. Spetzler: Radiat. Res. 17, 11 (1962).

    Article  CAS  Google Scholar 

  27. D.F. Regulla: Appl. Radiat. Isot. 52, 1023 (2000).

    Article  CAS  Google Scholar 

  28. (a) K. Mehta, R. Girzikowsky: Radiat. Phys. Chem. 46, 1247 (1995). (b) K. Mehta, R. Girzikowsky: Appl. Radiat. Isot. 52, 1179 (2000).

    Article  CAS  Google Scholar 

  29. (a) N.D. Yordanov, V. Gancheva: J. Radioanalyt. Nucl. Chem. 240, 619 (1999); ibid. 245, 323 (2000). (b) V. Gancheva, N.D. Yordanov, F. Callens, G. Vanhaelewyn, J. Raffi, E. Bortolin, S. Onori, E. Malinen, E. Sagstuen, S. Fabisiak, Z. Peimel-Stuglik: Radiat. Phys. Chem. 77, 357 (2008).

    Article  CAS  Google Scholar 

  30. A. Miller: Radiat. Phys. Chem. 42, 731 (1993).

    Article  CAS  Google Scholar 

  31. A. Miller, P.H.G. Sharpe: Radiat. Phys. Chem. 59, 323 (2000).

    Article  CAS  Google Scholar 

  32. P.H.G. Sharpe, A. Miller, J.P. Sephton, C.A. Gouldstone, M. Bailey, J. Helt-Hansen: Radiat. Phys. Chem. 78, 473 (2009).

    Article  CAS  Google Scholar 

  33. M. Lavalle, U. Corda, P.G. Fuochi, S. Caminati, M. Venturi, A. Kovács, M. Baranyai, A. Sáfrány, A. Miller: Radiat. Phys. Chem. 76, 1502 (2007).

    Article  CAS  Google Scholar 

  34. V. Nagy, S. Sholom, V. Chumak, M. Desrosiers: Appl. Radiat. Isot. 56, 917 (2002).

    Article  CAS  Google Scholar 

  35. R. Hayes, E. Haskell, A. Wieser, A. Romanyukha, B. Hardy, J. Barrus: Nucl. Instrum. Methods A 440, 453 (2000).

    Article  CAS  Google Scholar 

  36. M. Anton: Phys. Med. Biol. 51, 5419 (2006).

    Article  Google Scholar 

  37. (a) E.S. Bergstrand, E.O. Hole, E. Sagstuen: Appl. Radiat. Isot. 49, 845 (1998). (b) E.S. Bergstrand, K.R. Shortt, C.K Ross, E.O. Hole: Phys. Med. Biol. 48, 1753 (2003). (c) E.S. Bergstrand: ‘Alanine dosimetry by EPR spectroscopy’, Dissertation, University of Oslo (2005).

    Article  CAS  Google Scholar 

  38. M. Ikeya, G.M. Hassan, H. Sasaoka, Y. Kinoshita, S. Takaki, C. Yamanaka: Appl. Radiat. Isot. 52, 1209 (2000).

    Article  CAS  Google Scholar 

  39. T. Nakajima: Appl. Radiat. Isot. 46, 819 (1995).

    Article  CAS  Google Scholar 

  40. G.M. Hassan, M. Ikeya, S. Toyoda: Appl. Radiat. Isot. 49, 823 (1998).

    Article  CAS  Google Scholar 

  41. G.M. Hassan, M. Ikeya: Appl. Radiat. Isot. 52, 1247 (2000).

    Article  CAS  Google Scholar 

  42. S.K. Olsson, S. Bagherian, E. Lund, G. Alm Carlsson, A. Lund: Appl. Radiat. Isot. 50, 955 (1999).

    Article  Google Scholar 

  43. S. Olsson, E. Lund, A. Lund: Appl. Radiat. Isot. 52, 1235 (2000).

    Article  CAS  Google Scholar 

  44. A. Bartolotta, M.C. D’Oca, M. Brai, V. Caputo, V. De Caro, L.I. Giannola: Phys. Med. Biol. 46, 461 (2001).

    Article  CAS  Google Scholar 

  45. J.R. Morton, F.J. Ahlers, C.C.J. Schneider: Radiat. Prot. Dosimetry 47, 263 (1993).

    CAS  Google Scholar 

  46. S.E. Bogushevich, I.I. Ugolev: Appl. Radiat. Isot. 52 1217 (2000).

    Article  CAS  Google Scholar 

  47. M.P. Baran, O.A. Bugay, S.P. Kolesnik, V.M. Maksimenko, V.V. Teslenko, T.L. Petrenko, M.F. Desrosiers: Radiat. Prot. Dosimetry 120, 202 (2006).

    Article  CAS  Google Scholar 

  48. M.P. Baran, M.O. Mazin, V.M. Maksimenko: Ukr. J. Phys. 52, 676 (2007).

    Google Scholar 

  49. M.P. Baran, V.M. Maksimenko, V.V. Teslenko: J. Appl. Spectrosc. 75, 15 (2008).

    Article  CAS  Google Scholar 

  50. M. Danilczuk, H. Gustafsson, M.D. Sastry, E. Lund, A. Lund: Spectrochim. Acta A 69, 18 (2008).

    Article  CAS  Google Scholar 

  51. S. Murali, V. Natarajan, R. Venkataramani, Pusharja, M.D. Sastry: Appl. Radiat. Isot. 55, 253 (2001).

    Article  CAS  Google Scholar 

  52. H. Gustafsson, S. Olsson, A. Lund, E. Lund: Radiat. Res. 161, 464 (2004).

    Article  CAS  Google Scholar 

  53. H. Gustafsson, E. Lund, S. Olsson: Phys. Med. Biol. 53, 4667 (2008).

    Article  CAS  Google Scholar 

  54. L. Antonovic, H. Gustafsson, G. Alm Carlsson, Å. Carlsson Tedgren: Med. Phys. 36, 2236 (2009).

    CAS  Google Scholar 

  55. G.A. Rinard, R.W. Quine, S.S. Eaton, G.R. Eaton: J. Magn. Reson. 156, 113 (2002).

    Google Scholar 

  56. K. Komaguchi, Y. Matsubara, M. Shiotani, H. Gustafsson, E. Lund, A. Lund: Spectrochim. Acta A 66, 754 (2007).

    Article  CAS  Google Scholar 

  57. (a) H. Gustafsson, M. Danilczuk, M.D. Sastry, A. Lund, E. Lund: Spectrochim. Acta A 62, 614 (2005). (b) M. Danilczuk, H. Gustafsson, M.D. Sastry, E. Lund: Spectrochim. Acta A 67, 1370 (2007).

    Article  CAS  Google Scholar 

  58. (a) M. Marrale, M. Brai, G. Gennaro, A. Triolo, A. Bartolotta: Radiat. Meas. 42, 1217 (2007). (b) M. Marrale, G. Gennaro, M. Brai, S. Basile, A. Bartolotta, M.C. D’Oca: Radiat. Meas. 43, 471 (2008).

    Article  CAS  Google Scholar 

  59. E. Malinen, E. Waldeland, E.O. Hole, E. Sagstuen: Spectrochim. Acta A 63, 861 (2006).

    Article  Google Scholar 

  60. E. Lund, H. Gustafsson, M. Danilczuk, M.D. Sastry, A. Lund: Spectrochim. Acta A 60, 1319 (2004).

    Article  CAS  Google Scholar 

  61. M. Anton, H.-J. Selbach: Bruker Report 157/158, 48 (2006).

    Google Scholar 

  62. K. Ohno: Magn. Reson. Rev. 11, 275 (1987).

    Google Scholar 

  63. S. Schlick, K. Kruczala: In ‘Advanced ESR Methods in Polymer Research’ ed. by S. Schlick, Wiley, Hoboken, NJ (2006).

    Chapter  Google Scholar 

  64. H. Gustafsson, K. Kruczala, E. Lund, S. Schlick: J. Phys. Chem. B 112, 8437 (2008).

    Article  CAS  Google Scholar 

  65. M.V. Motyakin, S. Schlick: Macromolecules 35, 3984 (2002).

    Article  CAS  Google Scholar 

  66. A.R. Skinner: Appl. Radiat. Isot. 52, 1311 (2000).

    Article  CAS  Google Scholar 

  67. M. Ikeya: Nature 255, 48 (1975).

    Article  CAS  Google Scholar 

  68. V. Kirillov, S. Dubovsky: Radiat. Meas. 44, 144 (2009).

    Article  CAS  Google Scholar 

  69. E. Sagstuen, H. Theisen, T. Henriksen: Health Phys. 45, 961 (1983).

    Article  CAS  Google Scholar 

  70. http://www.iaea.org/programmes/nafa/d5/public/foodirradiation.pdf

  71. N.D. Yordanov, V. Gancheva, R. Tarandjiiska, R. Velkova, L. Kulieva, B. Damyanova, S. Popov: Spectrochim. Acta A 54, 2421 (1998).

    Article  Google Scholar 

  72. J. Raffi, N.D. Yordanov, S. Chabane, L. Douifi, V. Gancheva, S. Ivanova: Spectrochim. Acta A 56, 409 (2000).

    Article  Google Scholar 

  73. M. Ukai, Y. Shimoyama: Appl. Magn. Reson. 29, 1 (2005).

    Article  Google Scholar 

  74. Y. Shimoyama, M. Ukai, H. Nakamura: Spectrochim. Acta A 63, 888 (2006).

    Article  Google Scholar 

  75. M. Ukai: JEOL News 39(1), 27 (2004).

    Google Scholar 

  76. M. Ukai, H. Nakamura, Y. Shimoyama: Spectrochim. Acta A 63, 879 (2006).

    Article  Google Scholar 

  77. A.M. Portis: Phys. Rev. 91, 1071 (1953).

    Article  CAS  Google Scholar 

  78. T.G. Castner Jr.: Phys. Rev. 115, 1506 (1959).

    Article  CAS  Google Scholar 

  79. S. Schlick, L. Kevan: J. Magn. Reson. 22, 171 (1976).

    CAS  Google Scholar 

  80. F. Bloch: Phys. Rev. 70, 460 (1946).

    Article  CAS  Google Scholar 

  81. J. Maruani: J. Magn. Reson. 7, 207 (1972).

    CAS  Google Scholar 

  82. A. Lund, E. Sagstuen, A. Sanderud, J. Maruani: Radiat. Res. 172, 753 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Lund .

Appendix

Appendix

1.1 A9.1 Relaxation Times by CW Microwave Saturation Measurements

The method to obtain relaxation times from CW microwave saturation measurements for an inhomogenously broadened line is based on assumptions given in the literature [77, 78]. The ESR line shape is then expressed as a convolution of a Gauss and a Lorentz function [81]:

$$g(r) \propto \frac{{B_0 \beta }}{{\Delta B_G }}\int\limits_{ - \infty }^\infty {\frac{{e^{ - (ar^{\prime} )^2 } }}{{t^2 + (r - r^{\prime} )^2 }}dr^{\prime}} $$
((9.6))

Here β is the transition probability of the line g(r) centered at field B 0. The variables r and r are defined in terms of the corresponding magnetic fields B and B as:

$$r = \frac{{B - B_0 }}{{\Delta B_L }}\quad r' = \frac{{B' - B_0 }}{{\Delta B_L }}$$
((9.7))

ΔB L and ΔB G are the widths of the unsaturated Lorentzian, L(B), and Gaussian, G(B), line shapes :

$$\begin{array}{ll}&L(B) = \frac{1}{{\pi\Delta B_L}}\frac{1}{{1+\left({1+\displaystyle\frac{{B-B_0}}{{\Delta B_L}}}\right)^2}}\\ &G(B) = \frac{1}{{\sqrt\pi\Delta B_G}}e^{-\left({\frac{{B-B_0}}{{\Delta B_G}}}\right)^2}\end{array}$$
((9.8))

The parameters t 2 and a affecting the shape of the saturation curve are given by:

$$t^2 = 1 + \gamma ^2 B_1^2 \beta T_1 T_2 = 1 + s^2 $$
((9.9))
$$a = \frac{{\Delta B_L }}{{\Delta B_G }}$$
((9.10))

The saturation factor “s” contains the gyromagnetic ratio γ, the amplitude of the microwave magnetic field B 1 , and the spin-lattice and spin-spin relaxation times T 1 and T 2. The amplitude is related to the input microwave power by an expression of the type:

$$B_1 = k\sqrt {Q_L P} = K\sqrt P $$
((9.11))

The constant K depends on the type of resonator and its quality factor Q L with the sample inserted. It may often be difficult to estimate its value precisely, therefore the quantity P 0 is introduced:

$$P_0 = \frac{1}{{K^2 \gamma ^2 \beta T_1 T_2 }}$$
((9.12))

Using the microwave power P as variable and P 0 as a relaxation dependent parameter one obtains:

$$t = \sqrt {1 + {P/{P_0 }}} $$
((9.13))

The conventional saturation parameter s equals 1 for P = P 0. P0 was therefore referred to as the microwave power at saturation in [82].

The line-shape given by (9.6) is a Voigt function that can be evaluated numerically by a standard procedure [81]. For a single inhomogenously broadened line, the transition probability β is set to 1 as in a simple two-level system. The relaxation times are given by:

$$T_2 = \frac{1}{{\gamma \Delta B_L }}$$
((9.14))
$$T_1 = \frac{{\Delta B_L }}{{K^2 \gamma P_0 }}$$
((9.15))

The estimate of the spin-lattice relaxation time T 1 depends on the factor K to calculate the B 1 field from the corresponding microwave power according to equation (9.11).

The saturation curves must be recorded under slow passage conditions , that is, conditions such that the time between successive field modulation cycles is sufficiently long for each spin packet to relax between cycles. The spin system is then continually in thermal equilibrium and the true line shape is observed. A convenient formulation of the slow passage condition is given by the expression (9.16) [79]:

$$\omega _m B_m < < {{\Delta B{}_L}/{T_1 }}$$
((9.16))

Here ω m is the modulation circular frequency and B m is the modulation amplitude. The equation illustrates intuitively that the modulation rate must be much slower than the relaxation rate (1/T 1). Typical values may be ΔB L = 0.01 mT, T 1 = 10 μs and B m = 0.1 mT, requiring the modulation frequency ν m = ω m /2π being less than 1.5 kHz, a condition which often is difficult to achieve with many modern commercial spectrometers.

The formulae were incorporated in a computer program [82]. The input is an experimental array of the 1st derivative peak-to-peak ESR amplitude against the microwave power that is read from a previously prepared file and initial trial parameter values for the Lorentzian and Gaussian line-widths and the microwave power (P 0) at saturation that are provided interactively. The corresponding theoretical amplitudes were obtained by numerical differentiation of the Voigt function (1). A non-linear least squares fi t of the calculated saturation curve to the experimental data is performed. Output data consist of a graph of the experimental data and the fitted saturation curve, exemplified in Fig. 9.15 below. The parameters with fitting error estimates are printed to a file of the type shown below.

Fig. 9.15
figure 15

Experimental (+) and theoretical (–) saturation curves for radicals trapped in an X-irradiated crystalline dosimeter material

Analysis with 45 points, 4 parameters

 

Parameter

Error

Intensity:

.1614E+01

.5671E-02

Saturating power(mW):

.1289E+01

.2356E-01

Lorentzian width(G):

.3765E+00

.7793E-02

Gaussian width(G):

.2801E+01

 

Exp. width(G):

.3000E+01

 

Computed width(G):

.3000E+01

 

B1(G) = .4400E-01*sqrt(P/mW)

 

Parameter

Error

    T1(s):

.7424E-05

.2050E-06

    T2(s):

.1743E-06

.3185E-08

Modulation frequency =

.156E+04 Hz

 

Modulation amplitude =

.250E+00 G

 

Here, the widths are the peak-to-peak values λ L and λ G of the first derivatives and can be expressed in terms of the widths of the absorption lines as:

$$\begin{array}{ll}&\Delta B{}_L=\left(\sqrt{3}/2\right)\lambda_{L}\\ &\Delta B{}_G=\lambda_{G}/\sqrt{2}\end{array}$$
((9.17))

The slow-passage condition (9.16) is approximately fulfilled:

$$0.245 \cdot 10^4 = \omega _m B_m \textrm{(G/s)} < < {\Delta B{}_L}/{T_1 } = 0.621 \cdot 10^5$$

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lund, A., Shiotani, M., Shimada, S. (2011). Applications of Quantitative ESR. In: Principles and Applications of ESR Spectroscopy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5344-3_9

Download citation

Publish with us

Policies and ethics