Skip to main content

Applications to Catalysis and Environmental Science

  • Chapter
  • First Online:
  • 2316 Accesses

Abstract

Electronic and geometrical structures of NO-Na+ and Cu(I)-NO complexes formed in zeolites are discussed based on the g and the 14N and 23Na hf values evaluated by multi-frequency ESR, pulsed ENDOR and HYSCORE methods. The structure of (NO)2 bi-radical formed in zeolites is discussed based on X- and Q-band ESR spectra. Microenvironment effects on the molecular dynamics and the thermal stability of triethyl- and tripropyl-amine radical cations as spin probes are presented referring to the CW-X-band ESR results and theoretical DFT calculations. X- and Q-band ESR studies on nitrogen-doped TiO2 semiconductor reveal that the diamagnetic N ion in the system absorbs visible light so as to excite an electron of N to the conduction band. The photo-catalytic reactions of TiO2 are modified by introducing O2 molecules which scavenge a fraction of photoexcited electrons to generate O2 . ESR spectral characteristics of adsorbed O2 , g-tensor and hf structure of labeled 17O (I = 7/2), are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Angelescu, C. Nicolau, Z. Simon: J. Am. Chem. Soc. 88, 3910 (1962). (b) E.H. Adema: J. Polym. Sci. C 16, 3643 (1968).

    Article  Google Scholar 

  2. D.E. O’Reilly, D.S. Maclver: J. Phys. Chem. 66, 277 (1962).

    Google Scholar 

  3. J.C. Lunsford: Adv. Catal. 22, 265 (1972). (b) J.C. Lunsford: J. Phys. Chem. 72, 4163 (1968). (c) J.C. Lunsford: Catal. Rev. Sci. Eng. 12, 137 (1975).

    Article  CAS  Google Scholar 

  4. (a) P.H. Kasai, R.J. Bishop Jr.: In ‘ Zeolite Chemistry and Catalysis’, ACS Monograph 171, ed. by J.A Rabo, American Chemical Society, Washington, DC (1976), p. 350. (b) P.H. Kasai, R.J. Bishop Jr.: J. Am. Chem. Soc. 94, 5560 (1972). (c) P.H. Kasai, R.M. Gaura: J. Phys. Chem. 86, 4257 (1982). (d) P.H. Kasai: J. Chem. Phys. 43, 3322 (1965).

    Google Scholar 

  5. M. Che, E. Giamello: In ‘Spectroscopic Characterization of Heterogeneous Catalysis’, Vol. 57, ed. by J.L.G. Fierro, Elsevier, Amsterdam (1993), p. 265.

    Google Scholar 

  6. K. Dyrek, M. Che: Chem. Rev. 97, 306 (1997).

    Article  Google Scholar 

  7. A. Lund, C. Rhodes (eds.): ‘Radicals on Surfaces’, Kluwer Academic Publisher, Dordrecht (1994).

    Google Scholar 

  8. (a) D. Biglino, H. Li, R. Erickson, A. Lund, H. Yahiro, M. Shiotani: Phys. Chem. Chem. Phys. 1, 2887 (1999). (b) M. Shiotani, H. Yahiro, A. Lund: Zeolites 104 (1998).

    Article  CAS  Google Scholar 

  9. M. Hartmann, L. Kevan: Chem. Rev. 99, 635 (1999).

    Article  CAS  Google Scholar 

  10. T. Rudolf, A. Pöppl, W. Brunner, D. Michel: Magn. Reson. Chem. 37, 93 (1999).

    Article  Google Scholar 

  11. Z. Sojka, M. Che: Appl. Magn. Reson. 20, 433 (2001).

    Article  CAS  Google Scholar 

  12. W. Liu, A. Lund, M. Shiotani, J. Michalik, D. Biglino, M. Bonora: Appl. Magn. Reson. 24, 285 (2003).

    Article  CAS  Google Scholar 

  13. H. Yahiro, A. Lund, M. Shiotani: Spectroschim. Acta. A 60, 1267 (2004).

    Article  CAS  Google Scholar 

  14. P. Decyk: Catal. Today 114, 142 (2006).

    Article  CAS  Google Scholar 

  15. D.C. Huruma, A.G. Agrios, S.E. Crist, K.A. Gray, T. Rajh, M.C. Thurnauer: J. Electron Spectros. Relat. Phenomena 150, 155 (2006).

    Article  CAS  Google Scholar 

  16. C.D. Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M.C. Paganini, E. Giamello: Chem. Phys. 339, 44 (2007).

    Article  CAS  Google Scholar 

  17. T. Nagano, T. Yoshimura: Chem. Rev. 102, 1235 (2002).

    Article  CAS  Google Scholar 

  18. Y. Li, W.K. Hall: J. Phys. Chem. 94, 6145 (1990).

    Article  CAS  Google Scholar 

  19. (a) M. Iwamoto, H. Yahiro, N. Mizuno: Nippon Kagaku Kaishi 574 (1991). (b) M. Iwamoto, H. Hamda: Catal. Today 10, 57 (1991). (c) S. Sato, Y. Yu-u, H. Yahiro, N. Mizuno, M. Iwamoto: Appl. Catal. 70, 11 (1991). (d) H. Yahiro and M. Iwamoto: Appl. Catal. A 222, 103 (2001).

    Google Scholar 

  20. Y. Traa, B. Burger, J. Weitkamp: Microporous Mesoporous Mater. 30, 3 (1993).

    Article  Google Scholar 

  21. M. Shelef: Chem. Rev. 95, 209 (1995).

    Article  CAS  Google Scholar 

  22. (a) G. Centi, S. Perathoner, F. Vazzana, M. Marella, M. Tomaselli, M. Mantegazza: Adv. Envir. Res. 4, 325 (2000). (b) G. Centi, P. Ciambelli, S. Perathoner, P. Russo: Catal. Today, 75, 3 (2002).

    Article  Google Scholar 

  23. M.M. Hoffman, N.J. Nelson: J. Chem. Phys. 50, 2598 (1969).

    Article  CAS  Google Scholar 

  24. D. Biglino, H. Li, R. Erickson, A. Lund, H. Yahiro, M. Shiotani: Phys. Chem. Chem. Phys. 1, 2887 (1999).

    Article  CAS  Google Scholar 

  25. A. Pöppl, T. Rudolf, D. Michel: J. Am. Chem. Soc. 120, 4879 (1998).

    Article  Google Scholar 

  26. A. Pöppl, T. Rudolf, P. Manikandan, D. Goldfarb: J. Am. Chem. Soc. 122, 10194 (2000).

    Article  CAS  Google Scholar 

  27. T. Rudolf, A. Pöppl, W. Brunner, D. Michel: Magn. Reson. Chem. 37, S93 (1999).

    Article  CAS  Google Scholar 

  28. T. Rudolf, A. Pöppl, W. Hofbauer, D. Michel: Phys. Chem. Chem. Phys. 3, 2167 (2001).

    Article  CAS  Google Scholar 

  29. E. Giamello, D. Murphy, G. Magnacca, C. Morterra, Y. Shioya, T. Nomura, M. Anpo: J. Catal. 136, 510 (1992).

    Article  CAS  Google Scholar 

  30. T.I. Barry, L.A. Lay: J. Phys. Chem. Solids 29, 1395 (1968).

    Article  CAS  Google Scholar 

  31. V. Umamaheswari, M. Hartmann, A. Pöppl: J. Phys. Chem. B 109, 1537 (2005).

    Article  CAS  Google Scholar 

  32. Y.-J. Liu, A. Lund, P. Persson, S. Lunell: J. Phys. Chem. B 109, 7948 (2005).

    Article  CAS  Google Scholar 

  33. (a) B.M. Hoffman, J. Martinsen, R.A. Venters: J. Magn. Reson. 59, 110 (1984). (b) G.C. Hurst, T.A. Henderson, R.W. Kreilick: Am. Chem. Soc. 107, 7294 (1985). (c) A. Kreiter, J. Hüttermann: J. Magn. Reson. 93, 12 (1991).

    CAS  Google Scholar 

  34. J.R. Morton, K.F. Preston: J. Magn. Reson. 30, 577 (1978).

    CAS  Google Scholar 

  35. C.A. Hutchison Jr., D.B. McKay: J. Chem. Phys. 66, 3311 (1977).

    Article  CAS  Google Scholar 

  36. H. Yahiro, A. Lund, R. Aasa, N.P. Benetis, M. Shiotani: J. Phys. Chem. A 104, 7950 (2000).

    Article  CAS  Google Scholar 

  37. H. Yahiro, K. Kurohagi, G. Okada, Y. Itagaki, M. Shiotani, A. Lund: Phys. Chem. Chem. Phys. 4, 4255 (2002).

    Article  CAS  Google Scholar 

  38. A. Volodin, D. Biglino, Y. Itagaki, M. Shiotani, A. Lund: Chem. Phys. Lett. 327, 165 (2000).

    Article  CAS  Google Scholar 

  39. H. Zeldes, R. Livingston: J. Chem. Phys. 35, 563 (1961).

    Article  CAS  Google Scholar 

  40. M. Shiotani, J.H. Freed, J. Phys. Chem. 85, 3873 (1981).

    Article  CAS  Google Scholar 

  41. For example, see J.H. Freed: In ‘Spin Labelling: Theory and Applications’, Vol. 1, ed. by L. Berliner, Academic Press, New York, NY (1976), Chapter 3.

  42. (a) H. Yahiro, M. Shiotani, J.H. Freed, M. Lindgren, A. Lund: Stud. Surf. Sci. Catal. 94, 673 (1995). (b) M. Nagata, H. Yahiro, M. Shiotani, M. Lindgren, A. Lund: Chem. Phys. Lett. 256, 27 (1996).

    Article  CAS  Google Scholar 

  43. H. Li, H. Yahiro, K. Komaguchi, M. Shiotani, E. Sagstuen, A. Lund: Microporous Mesoporous Mater. 30, 275 (1999).

    Article  CAS  Google Scholar 

  44. H. Li, A. Lund, M. Lindgren, E. Sagstuen, H. Yahiro: Chem. Phys. Lett. 271, 84 (1997).

    Article  CAS  Google Scholar 

  45. H. Yahiro, M. Nagata, M. Shiotani, M. Lindgren, H. Li, A. Lund: Nukleonika 42, 557 (1997).

    CAS  Google Scholar 

  46. H. Li, H. Yahiro, M. Shiotani, A. Lund: J. Phys. Chem. B 102, 5641 (1998).

    Article  CAS  Google Scholar 

  47. B.M. Hoffman, T.B. Eames: J. Am. Chem. Soc. 91, 5186 (1969).

    Article  Google Scholar 

  48. G.P. Lozos, B.M. Hoffman: J. Phys. Chem. 78, 2110 (1974).

    Article  CAS  Google Scholar 

  49. E.V. Lunina, G.L. Markaryan, O.O. Parenago, A.V. Fionov: Colloids Surf. A 72, 333 (1993).

    Article  CAS  Google Scholar 

  50. M. Gutjahr, A. Pöppl, W. Böhlmann, R. Böttcher: Colloids Surf. A 189, 93 (2001).

    Article  CAS  Google Scholar 

  51. A. Pöppl, M. Hartmann, L. Kevan: J. Phys. Chem. 99, 17251 (1995).

    Article  Google Scholar 

  52. W. Bohlmann, A. Pöppl, D. Michel: Colloids Surf. A 158, 235 (1999)

    Article  CAS  Google Scholar 

  53. V. Umamaheswari, M. Hartmann, A. Pöppl: J. Phys. Chem. B 109, 10842 (2005).

    Article  CAS  Google Scholar 

  54. V. Umamaheswari, M. Hartmann, A. Pöpp: J. Phys. Chem. B 109, 19723 (2005).

    Article  CAS  Google Scholar 

  55. V. Umamaheswari, M. Hartmann, A. Pöppl: Magn. Reson. Chem. 43. S205 (2005).

    Article  CAS  Google Scholar 

  56. (a) A. Carrington, A.D. Mclachlan: ‘Introduction to Magnetic Resonance’, A Harper Intel. Edition, Harper and Row, London (1967), p. 147. (b) ibid. p. 83 and p. 109.

    Google Scholar 

  57. R. Ramprasad, K.C. Hass, E.F. Schneider, J.B. Adams: J. Phys. Chem. B 101, 6903 (1997).

    Article  CAS  Google Scholar 

  58. C. Freysoldt, A. Pöppl, J. Reinhold: J. Phys. Chem. A 108, 1582 (2004).

    Article  CAS  Google Scholar 

  59. (a) P. Pietrzyk, W. Piskorz, Z. Sojka, E. Broclawik: J. Phys. Chem. B 107, 6105 (2003). (b) J. Dědeček, D. Kaucký, B. Wichterlová, O. Gonsiorová: Phys. Chem. Chem. Phys. 4, 5406 (2002).

    Article  CAS  Google Scholar 

  60. W. Liu, P. Wang, K. Komaguchi, M. Shiotani, J. Michalik, A. Lund: Phys. Chem. Chem. Phys. 2, 2515 (2000).

    Article  CAS  Google Scholar 

  61. W. Liu, S. Yamanaka, M. Shiotani, J. Michalik, A. Lund: Phys. Chem. Chem. Phys. 3, 1611 (2001).

    Article  CAS  Google Scholar 

  62. W. Liu, M. Shiotani, J. Michalik, A. Lund: Phys. Chem. Chem. Phys. 3, 3532 (2001).

    Article  CAS  Google Scholar 

  63. Handbook of Chemical and Physics’, 83rd Edition, CRC Press, Boca Raton, FL (2002–2003).

    Google Scholar 

  64. (a) D.H. Aue, H.M. Webb, M.T. Bowers: J. Am. Chem. Soc. 98, 311 (1976). (b) Y.L. Chow, W.C. Danen, S.F. Nelsen, D.H. Rosenblatt: Chem. Rev. 78, 243 (1978).

    Article  CAS  Google Scholar 

  65. (a) R.M. Krishna, V. Kurshev, L. Kevan: Phys. Chem. Chem. Phys. 1, 2833 (1999). (b) B. Xiang, L. Kevan: Langmuir 10, 2688 (1994). (c) B. Xiang, L. Kevan: J. Phys. Chem. 98, 5120 (1994).

    Article  CAS  Google Scholar 

  66. (a) R.J.H. Clark, R.E. Heste: ‘Advances in Spectroscopy; Spectroscopy of New Materials’, Vol. 22, Wiley, New York, NY (1993). (b) S. Oliver, A. Kuperman, G.A. Ozin: Angew. Chem. Int. Ed. 37, 46 (1998).

    Google Scholar 

  67. M. Lindgren, N.P. Benetis, M. Mastumoto, M. Shiotani: Appl. Magn. Reson. 9, 45 (1995).

    Article  CAS  Google Scholar 

  68. (a) J. Heinzer: Mol. Phys. 22, 167 (1971). (b) L. Sjöqvist, N.P. Benetis, A. Lund, J. Maruani: Chem. Phys. 156, 457 (1991).

    Article  CAS  Google Scholar 

  69. R. Szostak: In ‘Handbook of Molecular Sieves’, Van Nostrand Reinhold, New York, NY (1992).

    Google Scholar 

  70. L.S. de Saldarriaga, C. Saldarriaga, M.E. Davis: J. Am. Chem. Soc. 109, 2686 (1987).

    Article  Google Scholar 

  71. J. Michalik: Appl. Magn. Reson, 10, 507 (1996).

    Article  CAS  Google Scholar 

  72. J.S. Yu, J.W. Ryoo, C.W. Lee, S.J. Kim, S.B. Hong, L. Kevan: J. Chem. Soc. Faraday Trans. 93, 1225 (1997).

    Article  CAS  Google Scholar 

  73. A. Fujishima, K. Honda: Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  74. A.L. Linsebigler, G. Lu, J.T. Yates: Chem. Rev. 95, 735 (1995).

    Article  CAS  Google Scholar 

  75. (a) A.G. Agrios, K.A. Gray, E. Weitz: Langmuir 19, 1402 (2003). (b) ibid. 19, 5178 (2003).

    Article  CAS  Google Scholar 

  76. M.A. Fox, M.T. Dulay: Chem. Rev. 93, 341 (1993).

    Article  CAS  Google Scholar 

  77. A. Hagfeldt, M. Grätzel: Chem. Rev. 95, 49 (1995).

    Article  CAS  Google Scholar 

  78. A. Mills, S. Le Hunte: J. Photochem. Photobiol. A 108, 1 (1997).

    Article  CAS  Google Scholar 

  79. R.R. Bacsa, J. Kiwi: Appl. Catal. B 16, 19 (1998).

    Article  CAS  Google Scholar 

  80. (a) T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto: Thin Solid Films 351, 260 (1999). (b) T. Sumita, T. Yamaki, S. Yamamoto, A. Miyashita: Appl. Surf. Sci. 200, 21 (2002).

    Article  CAS  Google Scholar 

  81. (a) U. Stafford, K.A. Gray, P.V. Kamat, A. Varma: Chem. Phys. Lett. 205, 55 (1993). (b) G. Riegel, J.R. Bolton: J. Phys. Chem. 99, 4215 (1995).

    Article  CAS  Google Scholar 

  82. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann: Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  83. S. Sato: Chem. Phys. Lett. 123, 126 (1986).

    Article  CAS  Google Scholar 

  84. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga: Science 293, 269 (2001).

    Article  CAS  Google Scholar 

  85. S. Sakthivel, M. Janczarek, H. Kisch: J. Phys. Chem. B 108, 19384 (2004).

    Article  CAS  Google Scholar 

  86. H. Irie, Y. Watanabe, K. Hashimoto: J. Phys. Chem. B 107, 5483 (2003).

    Article  CAS  Google Scholar 

  87. O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck, J.T. Yates Jr.: J. Phys. Chem. B 108, 6004 (2004).

    Article  CAS  Google Scholar 

  88. M. Miyauchi, A. Ikezawa, H. Tobimatsu, H. Irie, K. Hashimoto: Phys. Chem. Chem. Phys. 6, 865 (2004).

    Article  CAS  Google Scholar 

  89. J.L. Gole, J.D. Stout, C. Burda, Y. Lou, X. Chen: J. Phys. Chem. B 108, 1230 (2004).

    Article  CAS  Google Scholar 

  90. Z. Lin, A. Orlov, R.M. Lambert, M.C. Payne: J. Phys. Chem. B 109, 20948 (2005).

    Article  CAS  Google Scholar 

  91. S. Sato, R. Nakamura, S. Abe: Appl. Catal. B 284, 131 (2005).

    Article  CAS  Google Scholar 

  92. M. Sathish, B. Viswanathan, R.P. Viswanath, C.S. Gopinath: Chem. Mater. 17, 6349 (2005).

    Article  CAS  Google Scholar 

  93. M. Alvaro, E. Carbonell, V. Fornés, H. Garcia: Chem. Phys. Chem. 7, 200 (2006).

    Article  CAS  Google Scholar 

  94. Y. Nosaka, M. Matsushita, J. Nasino, A.Y. Nosaka: Sci. Technol. Adv. Mater. 6, 143 (2005).

    Article  CAS  Google Scholar 

  95. Y. Irokawa, T. Morikawa, K. Aoki, S. Kosaka, T. Ohwaki, Y. Taga: Phys. Chem. Chem. Phys. 8, 1116 (2008).

    Article  CAS  Google Scholar 

  96. S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. Di Valentin, G. Pacchioni: J. Am. Chem. Soc. 128, 15666 (2006).

    Article  CAS  Google Scholar 

  97. P.F. Cornaz, J.H.C. Van Hooff, F.J. Pluijm, G.C.A. Schuit: Discuss. Faraday Soc. 41, 290 (1966).

    Article  Google Scholar 

  98. R.D. Iyenger, M. Codell: Adv. Colloid Interface Sci. 3, 365 (1972).

    Article  Google Scholar 

  99. R.F. Howe, M. Grätzel: J. Phys. Chem. 89, 4495 (1985).

    Article  CAS  Google Scholar 

  100. Y. Nakaoka, Y. Nosaka: J. Photochem. Photobiol. A 110, 299 (1997).

    Article  CAS  Google Scholar 

  101. S.W. Ahn, L. Kevan: J. Chem. Soc. Faraday Trans. 94, 3147 (1998).

    Article  Google Scholar 

  102. S. Livraghi, A. Votta, M.C. Paganini, E. Giamello: Chem. Commun. 4, 498 (2005).

    Article  CAS  Google Scholar 

  103. T.L. Ma, M. Akiyama, E. Abe, I. Imai: Nano Lett. 5, 2543 (2005).

    Article  CAS  Google Scholar 

  104. C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello: J. Phys. Chem. B 109, 11414 (2005).

    Article  CAS  Google Scholar 

  105. C. Di Valentin, G. Pacchioni, A. Selloni: Phys. Rev. B 70, 085116 (2004).

    Article  CAS  Google Scholar 

  106. Y. Itagaki, K. Nomura, M. Shiotani, A. Lund: Phys. Chem. Chem. Phys. 3, 4444 (2001).

    Article  CAS  Google Scholar 

  107. A. Heller: Acc. Chem. Res. 28, 503 (1995).

    Article  CAS  Google Scholar 

  108. D.-R. Park, J. Zhang, K. Ikeue, H. Yamashita, M. Anpo: J. Catal. 185, 114 (1999).

    Article  CAS  Google Scholar 

  109. J. Yang, C. Chen, H. Ji, W. Ma, J. Zhao: J. Phys. Chem. B 109, 21900 (2005).

    Article  CAS  Google Scholar 

  110. M. Stylidi, D. Kondarides, X.E. Verykios: Appl. Catal. B 47, 189 (2004).

    Article  CAS  Google Scholar 

  111. (a) K. Komaguchi, T. Maruoka, H. Nakano, I. Imae, Y. Ooyama, Y. Harima: J. Phys. Chem. C 113, 1160 (2009). (b) ibid. C 114, 1240 (2010).

    Article  CAS  Google Scholar 

  112. E. Carter, A.F. Carley, D.M. Murphy: J. Phys. Chem. C 111, 10630 (2007).

    Article  CAS  Google Scholar 

  113. M.P. De Lara-Castells, J.L. Krause: Chem. Phys. Lett. 354, 483 (2002).

    Article  Google Scholar 

  114. D.N. Mirlin, I.I. Reshina, L.S. Sochava: Sov. Phys. Solid State 11, 1995 (1970).

    Google Scholar 

  115. T. Sekiya, K. Ichimura, M. Igarashi, S. Kurita: J. Phys. Chem. Solids 61, 1237 (2000).

    Article  CAS  Google Scholar 

  116. V.N. Kuznetsov, T.K. Krutitskaya: Kinet. Catal. 37, 446 (1996).

    CAS  Google Scholar 

  117. J. Chen, L.-B. Lin, F.-Q. Wing: J. Phys. Chem. Solids 62, 1257 (2001).

    Article  CAS  Google Scholar 

  118. (a) A.A. Lisachenko, V.N. Kuznetsov, M.N. Zakharov, R.V. Mikhailov: Kinet. Catal. 45, 189 (2004). (b) A.A. Lisachenko, R.V. Mikhailov: Tech. Phys. Lett. 1, 21 (2005).

    Article  CAS  Google Scholar 

  119. S.W. Ahn, L. Kevan: J. Chem. Soc. Faraday Trans. 94, 3147 (1998).

    Article  Google Scholar 

  120. J. Jia, T. Ohno, M. Matsumura: Chem. Lett. 908 (2000).

    Google Scholar 

  121. K. Komaguchi, H. Nakano, A. Arakia, Y. Harima: Chem. Phys. Lett. 428, 338 (2006).

    Article  CAS  Google Scholar 

  122. Y. Nakaoka, Y. Nosaka, J. Photochem. Photobiol. A 110, 299 (1997).

    Article  CAS  Google Scholar 

  123. S. Leytner, J.T. Hupp: Chem. Phys. Lett. 330, 231 (2000).

    Article  CAS  Google Scholar 

  124. W. Känzig, M.H. Cohen: Phys. Rev. Lett. 3, 509 (1959).

    Article  Google Scholar 

  125. M. Shiotani, G. Moro, J.H. Freed: J. Chem. Phys. 74, 2616 (1981).

    Article  CAS  Google Scholar 

  126. K. Tatsumi, M. Shiotani, J.H. Freed: J. Phys. Chem. 87, 3425 (1983).

    Article  CAS  Google Scholar 

  127. C. Heller, H.M. McConnell: J. Chem. Phys. 32, 1535 (1960).

    Article  CAS  Google Scholar 

  128. M. Mikami, S. Nakamura, O. Kitao, H. Arakawa, X. Gonze: Jpn. J. Appl. Phys. 39, 847 (2000).

    Article  Google Scholar 

  129. H. Tang, H. Berger, P.E. Schmid, F. Lévy, G. Burri: Solid State Commun. 23, 161 (1977).

    Article  Google Scholar 

  130. V.E. Henrich, R.L. Kurtz: Phys. Rev. B 23, 6280 (1981).

    Article  CAS  Google Scholar 

  131. R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman: Phys. Rev. B 61, 7459 (2000).

    Article  CAS  Google Scholar 

  132. J.C. Woicik, E.J. Nelson, L. Kronik, M. Jain, J.R. Chelikowsky, D. Heskett, L.E. Berman, G.S. Herman: Phys. Rev. Lett. 89, 077401 (2002).

    Article  CAS  Google Scholar 

  133. R. Sanjinés, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Lévy: J. Appl. Phys. 75, 2945 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Lund .

Appendices

Appendices

1.1 A6.1 Isotropic Hyperfine Splittings of β-Hydrogens

The isotropic hf splitting of β-hydrogens, a β-H, arises, in principle, due to a hyperconjugative mechanism [56b]. To illustrate the general ideas here we consider triethylamine radical cation, (CH3CH2)3N· +, described in Section 6.4. The hydrogens of (CH3CH2)3N· + are conventionally labeled with Greek letters: β for one bonded to carbon adjacent to the π-radical center (α-position; N atom) and γ for a hydrogen one carbon further out as CγH3-CβH2-Nα · +-(CH3CH2)2. It is found experimentally that the β-hydrogen hf splitting is formulated as follows [127]:

$$\mathop a\nolimits_{\beta - H} = (A + B\cos ^2 \theta )\rho $$
((6.10))

where θ is the angle between the unpaired electron 2p z orbital at the π-radical center and the C(β)-H bond and ρ is the spin density on the nitrogen 2p z orbital, see Fig. 6.8(c). Coefficient B reflects the spin density arising from hyperconjugation and should be positive; the positive sign has been confirmed by NMR experiments. On the other hand coefficient A accounts for that arising from orientation-independent mechanisms such as spin polarization. If there is free rotation about the Cβ—Nα bond then we observe an orientationally averaged hf splitting:

$$\left\langle {\mathop a\nolimits_{\beta - H} } \right\rangle _{av} = \left(A + B\left\langle {\cos ^2 \theta } \right\rangle _{av} \right)\rho = (A + (1/2)B)\rho $$
((6.11))

Studies of many systems suggest that the value of A is much smaller than B, i.e., less than ca. 0.3 mT and Eq. (6.10) can be approximated as:

$$\mathop a\nolimits_{\beta - H} = B\rho \cos ^2 \theta $$
((6.12))

From the ESR spectral analysis of (CH3CH2)3N· + in AlPO4-5 the following isotropic hf splittings have been identified: a β-H = 2.0 mT for six equivalent β-hydrogens at 300 K corresponding to an averaged structure and a β-H = 3.6 mT for three equivalent hydrogens, one from each β-methylene group, at a low temperature of 77 K corresponding to a rigid limit structure, see Fig. 6.8(a) and (b). Combining Eq. (6.12) with the experimental β-hydrogen hf splittings at 77 and 300 K, we have the following four equations:

$$\mathop a\nolimits_{\beta - H} (1) = B\rho \cos ^2 \theta (1) = 3.6{\textrm{mT}}\ \hbox{(experimental value at 77\,K)}$$
((6.13))
$$\mathop a\nolimits_{\beta - H} (2) = B\rho \cos ^2 \theta (2)$$
((6.14))
$$\left( {\mathop a\nolimits_{\beta - H} (1)\mathop { + a}\nolimits_{\beta - H} (2)} \right)/2 = 2.0{\textrm{mT}}\ \hbox{(experimental value at 300\,K)}$$
((6.15))
$$\theta (1) + \theta (2) = 120^\circ\ \hbox{(assumption)}$$
((6.16))

By solving the equations we obtain: = 6.9 mT, a β H(2) = 0.4 mT, θ(1) = 44° and θ(2) = 76°, see Fig. 6.8(c). Consistent with the experimental result the value evaluated for a βH(2), 0.4 mT, is much smaller than the experimental line-width of 1.2 mT at 77 K and too small to be resolved in the spectrum.

We close this section by repeating that Eq. (6.10) for the angular dependence on β-hydrogens is very useful in discussing geometrical structures (conformations) of not only the amine radical cations exemplified here but also for other many alkyl-type radicals [56b] including those stabilized in organic solid polymers as described in Chapter 7.

1.2 A6.2 Anatase and Rutile TiO2

Titanium dioxide has several polymorphs. Among them, rutile (P42/mnm space group, D 4 h) and anatase (I41/amd space group, D 4 h) are well known from viewpoint of crystal structure [128] and have been intensively studied for photocatalysis. Experimentally, anatase has a slightly larger band gaps than rutile, 3.2 vs. 3.0 eV [129, 130]. Ab-initio calculations show that the primary structural difference between the anatase and rutile phases is that the former is 9% less dense than the latter, and has larger Ti-Ti distances, a more pronounced localization of the Ti 3d states and a narrower 3d band [131]. This can be a reason why the carrier (electron) generated in anatase by UV excitation is less mobile than in rutile. Also the O 2p-Ti 3d hybridization is different in the two structures (more covalent mixing in rutile), with anatase exhibiting a valence and a conduction band with more pronounced O 2p and Ti 3d characters, respectively [131]. In rutile the greater Pauli repulsion among the oxygen 2p electrons results in a larger O 2p bandwidth. Experimentally, the bandwidth in rutile is 6 eV while it is 4.7 eV in anatase [132, 133]. The calculated values are 5.3 and 4.5 eV, respectively; the values nicely reflect the important difference in the electronic structures [105].

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lund, A., Shiotani, M., Shimada, S. (2011). Applications to Catalysis and Environmental Science . In: Principles and Applications of ESR Spectroscopy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5344-3_6

Download citation

Publish with us

Policies and ethics