Advertisement

Applications to Catalysis and Environmental Science

Chapter

Abstract

Electronic and geometrical structures of NO-Na+ and Cu(I)-NO complexes formed in zeolites are discussed based on the g and the 14N and 23Na hf values evaluated by multi-frequency ESR, pulsed ENDOR and HYSCORE methods. The structure of (NO)2 bi-radical formed in zeolites is discussed based on X- and Q-band ESR spectra. Microenvironment effects on the molecular dynamics and the thermal stability of triethyl- and tripropyl-amine radical cations as spin probes are presented referring to the CW-X-band ESR results and theoretical DFT calculations. X- and Q-band ESR studies on nitrogen-doped TiO2 semiconductor reveal that the diamagnetic N ion in the system absorbs visible light so as to excite an electron of N to the conduction band. The photo-catalytic reactions of TiO2 are modified by introducing O2 molecules which scavenge a fraction of photoexcited electrons to generate O2 . ESR spectral characteristics of adsorbed O2 , g-tensor and hf structure of labeled 17O (I = 7/2), are presented.

Keywords

Nitric Oxide Spin Probe ENDOR Spectrum Sodalite Cage Unpaired Electron Spin Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Angelescu, C. Nicolau, Z. Simon: J. Am. Chem. Soc. 88, 3910 (1962). (b) E.H. Adema: J. Polym. Sci. C 16, 3643 (1968).CrossRefGoogle Scholar
  2. 2.
    D.E. O’Reilly, D.S. Maclver: J. Phys. Chem. 66, 277 (1962).Google Scholar
  3. 3.
    J.C. Lunsford: Adv. Catal. 22, 265 (1972). (b) J.C. Lunsford: J. Phys. Chem. 72, 4163 (1968). (c) J.C. Lunsford: Catal. Rev. Sci. Eng. 12, 137 (1975).CrossRefGoogle Scholar
  4. 4.
    (a) P.H. Kasai, R.J. Bishop Jr.: In ‘ Zeolite Chemistry and Catalysis’, ACS Monograph 171, ed. by J.A Rabo, American Chemical Society, Washington, DC (1976), p. 350. (b) P.H. Kasai, R.J. Bishop Jr.: J. Am. Chem. Soc. 94, 5560 (1972). (c) P.H. Kasai, R.M. Gaura: J. Phys. Chem. 86, 4257 (1982). (d) P.H. Kasai: J. Chem. Phys. 43, 3322 (1965).Google Scholar
  5. 5.
    M. Che, E. Giamello: In ‘Spectroscopic Characterization of Heterogeneous Catalysis’, Vol. 57, ed. by J.L.G. Fierro, Elsevier, Amsterdam (1993), p. 265.Google Scholar
  6. 6.
    K. Dyrek, M. Che: Chem. Rev. 97, 306 (1997).CrossRefGoogle Scholar
  7. 7.
    A. Lund, C. Rhodes (eds.): ‘Radicals on Surfaces’, Kluwer Academic Publisher, Dordrecht (1994).Google Scholar
  8. 8.
    (a) D. Biglino, H. Li, R. Erickson, A. Lund, H. Yahiro, M. Shiotani: Phys. Chem. Chem. Phys. 1, 2887 (1999). (b) M. Shiotani, H. Yahiro, A. Lund: Zeolites 104 (1998).CrossRefGoogle Scholar
  9. 9.
    M. Hartmann, L. Kevan: Chem. Rev. 99, 635 (1999).CrossRefGoogle Scholar
  10. 10.
    T. Rudolf, A. Pöppl, W. Brunner, D. Michel: Magn. Reson. Chem. 37, 93 (1999).CrossRefGoogle Scholar
  11. 11.
    Z. Sojka, M. Che: Appl. Magn. Reson. 20, 433 (2001).CrossRefGoogle Scholar
  12. 12.
    W. Liu, A. Lund, M. Shiotani, J. Michalik, D. Biglino, M. Bonora: Appl. Magn. Reson. 24, 285 (2003).CrossRefGoogle Scholar
  13. 13.
    H. Yahiro, A. Lund, M. Shiotani: Spectroschim. Acta. A 60, 1267 (2004).CrossRefGoogle Scholar
  14. 14.
    P. Decyk: Catal. Today 114, 142 (2006).CrossRefGoogle Scholar
  15. 15.
    D.C. Huruma, A.G. Agrios, S.E. Crist, K.A. Gray, T. Rajh, M.C. Thurnauer: J. Electron Spectros. Relat. Phenomena 150, 155 (2006).CrossRefGoogle Scholar
  16. 16.
    C.D. Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M.C. Paganini, E. Giamello: Chem. Phys. 339, 44 (2007).CrossRefGoogle Scholar
  17. 17.
    T. Nagano, T. Yoshimura: Chem. Rev. 102, 1235 (2002).CrossRefGoogle Scholar
  18. 18.
    Y. Li, W.K. Hall: J. Phys. Chem. 94, 6145 (1990).CrossRefGoogle Scholar
  19. 19.
    (a) M. Iwamoto, H. Yahiro, N. Mizuno: Nippon Kagaku Kaishi 574 (1991). (b) M. Iwamoto, H. Hamda: Catal. Today 10, 57 (1991). (c) S. Sato, Y. Yu-u, H. Yahiro, N. Mizuno, M. Iwamoto: Appl. Catal. 70, 11 (1991). (d) H. Yahiro and M. Iwamoto: Appl. Catal. A 222, 103 (2001).Google Scholar
  20. 20.
    Y. Traa, B. Burger, J. Weitkamp: Microporous Mesoporous Mater. 30, 3 (1993).CrossRefGoogle Scholar
  21. 21.
    M. Shelef: Chem. Rev. 95, 209 (1995).CrossRefGoogle Scholar
  22. 22.
    (a) G. Centi, S. Perathoner, F. Vazzana, M. Marella, M. Tomaselli, M. Mantegazza: Adv. Envir. Res. 4, 325 (2000). (b) G. Centi, P. Ciambelli, S. Perathoner, P. Russo: Catal. Today, 75, 3 (2002).CrossRefGoogle Scholar
  23. 23.
    M.M. Hoffman, N.J. Nelson: J. Chem. Phys. 50, 2598 (1969).CrossRefGoogle Scholar
  24. 24.
    D. Biglino, H. Li, R. Erickson, A. Lund, H. Yahiro, M. Shiotani: Phys. Chem. Chem. Phys. 1, 2887 (1999).CrossRefGoogle Scholar
  25. 25.
    A. Pöppl, T. Rudolf, D. Michel: J. Am. Chem. Soc. 120, 4879 (1998).CrossRefGoogle Scholar
  26. 26.
    A. Pöppl, T. Rudolf, P. Manikandan, D. Goldfarb: J. Am. Chem. Soc. 122, 10194 (2000).CrossRefGoogle Scholar
  27. 27.
    T. Rudolf, A. Pöppl, W. Brunner, D. Michel: Magn. Reson. Chem. 37, S93 (1999).CrossRefGoogle Scholar
  28. 28.
    T. Rudolf, A. Pöppl, W. Hofbauer, D. Michel: Phys. Chem. Chem. Phys. 3, 2167 (2001).CrossRefGoogle Scholar
  29. 29.
    E. Giamello, D. Murphy, G. Magnacca, C. Morterra, Y. Shioya, T. Nomura, M. Anpo: J. Catal. 136, 510 (1992).CrossRefGoogle Scholar
  30. 30.
    T.I. Barry, L.A. Lay: J. Phys. Chem. Solids 29, 1395 (1968).CrossRefGoogle Scholar
  31. 31.
    V. Umamaheswari, M. Hartmann, A. Pöppl: J. Phys. Chem. B 109, 1537 (2005).CrossRefGoogle Scholar
  32. 32.
    Y.-J. Liu, A. Lund, P. Persson, S. Lunell: J. Phys. Chem. B 109, 7948 (2005).CrossRefGoogle Scholar
  33. 33.
    (a) B.M. Hoffman, J. Martinsen, R.A. Venters: J. Magn. Reson. 59, 110 (1984). (b) G.C. Hurst, T.A. Henderson, R.W. Kreilick: Am. Chem. Soc. 107, 7294 (1985). (c) A. Kreiter, J. Hüttermann: J. Magn. Reson. 93, 12 (1991).Google Scholar
  34. 34.
    J.R. Morton, K.F. Preston: J. Magn. Reson. 30, 577 (1978).Google Scholar
  35. 35.
    C.A. Hutchison Jr., D.B. McKay: J. Chem. Phys. 66, 3311 (1977).CrossRefGoogle Scholar
  36. 36.
    H. Yahiro, A. Lund, R. Aasa, N.P. Benetis, M. Shiotani: J. Phys. Chem. A 104, 7950 (2000).CrossRefGoogle Scholar
  37. 37.
    H. Yahiro, K. Kurohagi, G. Okada, Y. Itagaki, M. Shiotani, A. Lund: Phys. Chem. Chem. Phys. 4, 4255 (2002).CrossRefGoogle Scholar
  38. 38.
    A. Volodin, D. Biglino, Y. Itagaki, M. Shiotani, A. Lund: Chem. Phys. Lett. 327, 165 (2000).CrossRefGoogle Scholar
  39. 39.
    H. Zeldes, R. Livingston: J. Chem. Phys. 35, 563 (1961).CrossRefGoogle Scholar
  40. 40.
    M. Shiotani, J.H. Freed, J. Phys. Chem. 85, 3873 (1981).CrossRefGoogle Scholar
  41. 41.
    For example, see J.H. Freed: In ‘Spin Labelling: Theory and Applications’, Vol. 1, ed. by L. Berliner, Academic Press, New York, NY (1976),  Chapter 3.
  42. 42.
    (a) H. Yahiro, M. Shiotani, J.H. Freed, M. Lindgren, A. Lund: Stud. Surf. Sci. Catal. 94, 673 (1995). (b) M. Nagata, H. Yahiro, M. Shiotani, M. Lindgren, A. Lund: Chem. Phys. Lett. 256, 27 (1996).CrossRefGoogle Scholar
  43. 43.
    H. Li, H. Yahiro, K. Komaguchi, M. Shiotani, E. Sagstuen, A. Lund: Microporous Mesoporous Mater. 30, 275 (1999).CrossRefGoogle Scholar
  44. 44.
    H. Li, A. Lund, M. Lindgren, E. Sagstuen, H. Yahiro: Chem. Phys. Lett. 271, 84 (1997).CrossRefGoogle Scholar
  45. 45.
    H. Yahiro, M. Nagata, M. Shiotani, M. Lindgren, H. Li, A. Lund: Nukleonika 42, 557 (1997).Google Scholar
  46. 46.
    H. Li, H. Yahiro, M. Shiotani, A. Lund: J. Phys. Chem. B 102, 5641 (1998).CrossRefGoogle Scholar
  47. 47.
    B.M. Hoffman, T.B. Eames: J. Am. Chem. Soc. 91, 5186 (1969).CrossRefGoogle Scholar
  48. 48.
    G.P. Lozos, B.M. Hoffman: J. Phys. Chem. 78, 2110 (1974).CrossRefGoogle Scholar
  49. 49.
    E.V. Lunina, G.L. Markaryan, O.O. Parenago, A.V. Fionov: Colloids Surf. A 72, 333 (1993).CrossRefGoogle Scholar
  50. 50.
    M. Gutjahr, A. Pöppl, W. Böhlmann, R. Böttcher: Colloids Surf. A 189, 93 (2001).CrossRefGoogle Scholar
  51. 51.
    A. Pöppl, M. Hartmann, L. Kevan: J. Phys. Chem. 99, 17251 (1995).CrossRefGoogle Scholar
  52. 52.
    W. Bohlmann, A. Pöppl, D. Michel: Colloids Surf. A 158, 235 (1999)CrossRefGoogle Scholar
  53. 53.
    V. Umamaheswari, M. Hartmann, A. Pöppl: J. Phys. Chem. B 109, 10842 (2005).CrossRefGoogle Scholar
  54. 54.
    V. Umamaheswari, M. Hartmann, A. Pöpp: J. Phys. Chem. B 109, 19723 (2005).CrossRefGoogle Scholar
  55. 55.
    V. Umamaheswari, M. Hartmann, A. Pöppl: Magn. Reson. Chem. 43. S205 (2005).CrossRefGoogle Scholar
  56. 56.
    (a) A. Carrington, A.D. Mclachlan: ‘Introduction to Magnetic Resonance’, A Harper Intel. Edition, Harper and Row, London (1967), p. 147. (b) ibid. p. 83 and p. 109.Google Scholar
  57. 57.
    R. Ramprasad, K.C. Hass, E.F. Schneider, J.B. Adams: J. Phys. Chem. B 101, 6903 (1997).CrossRefGoogle Scholar
  58. 58.
    C. Freysoldt, A. Pöppl, J. Reinhold: J. Phys. Chem. A 108, 1582 (2004).CrossRefGoogle Scholar
  59. 59.
    (a) P. Pietrzyk, W. Piskorz, Z. Sojka, E. Broclawik: J. Phys. Chem. B 107, 6105 (2003). (b) J. Dědeček, D. Kaucký, B. Wichterlová, O. Gonsiorová: Phys. Chem. Chem. Phys. 4, 5406 (2002).CrossRefGoogle Scholar
  60. 60.
    W. Liu, P. Wang, K. Komaguchi, M. Shiotani, J. Michalik, A. Lund: Phys. Chem. Chem. Phys. 2, 2515 (2000).CrossRefGoogle Scholar
  61. 61.
    W. Liu, S. Yamanaka, M. Shiotani, J. Michalik, A. Lund: Phys. Chem. Chem. Phys. 3, 1611 (2001).CrossRefGoogle Scholar
  62. 62.
    W. Liu, M. Shiotani, J. Michalik, A. Lund: Phys. Chem. Chem. Phys. 3, 3532 (2001).CrossRefGoogle Scholar
  63. 63.
    Handbook of Chemical and Physics’, 83rd Edition, CRC Press, Boca Raton, FL (2002–2003).Google Scholar
  64. 64.
    (a) D.H. Aue, H.M. Webb, M.T. Bowers: J. Am. Chem. Soc. 98, 311 (1976). (b) Y.L. Chow, W.C. Danen, S.F. Nelsen, D.H. Rosenblatt: Chem. Rev. 78, 243 (1978).CrossRefGoogle Scholar
  65. 65.
    (a) R.M. Krishna, V. Kurshev, L. Kevan: Phys. Chem. Chem. Phys. 1, 2833 (1999). (b) B. Xiang, L. Kevan: Langmuir 10, 2688 (1994). (c) B. Xiang, L. Kevan: J. Phys. Chem. 98, 5120 (1994).CrossRefGoogle Scholar
  66. 66.
    (a) R.J.H. Clark, R.E. Heste: ‘Advances in Spectroscopy; Spectroscopy of New Materials’, Vol. 22, Wiley, New York, NY (1993). (b) S. Oliver, A. Kuperman, G.A. Ozin: Angew. Chem. Int. Ed. 37, 46 (1998).Google Scholar
  67. 67.
    M. Lindgren, N.P. Benetis, M. Mastumoto, M. Shiotani: Appl. Magn. Reson. 9, 45 (1995).CrossRefGoogle Scholar
  68. 68.
    (a) J. Heinzer: Mol. Phys. 22, 167 (1971). (b) L. Sjöqvist, N.P. Benetis, A. Lund, J. Maruani: Chem. Phys. 156, 457 (1991).CrossRefGoogle Scholar
  69. 69.
    R. Szostak: In ‘Handbook of Molecular Sieves’, Van Nostrand Reinhold, New York, NY (1992).Google Scholar
  70. 70.
    L.S. de Saldarriaga, C. Saldarriaga, M.E. Davis: J. Am. Chem. Soc. 109, 2686 (1987).CrossRefGoogle Scholar
  71. 71.
    J. Michalik: Appl. Magn. Reson, 10, 507 (1996).CrossRefGoogle Scholar
  72. 72.
    J.S. Yu, J.W. Ryoo, C.W. Lee, S.J. Kim, S.B. Hong, L. Kevan: J. Chem. Soc. Faraday Trans. 93, 1225 (1997).CrossRefGoogle Scholar
  73. 73.
    A. Fujishima, K. Honda: Nature 238, 37 (1972).CrossRefGoogle Scholar
  74. 74.
    A.L. Linsebigler, G. Lu, J.T. Yates: Chem. Rev. 95, 735 (1995).CrossRefGoogle Scholar
  75. 75.
    (a) A.G. Agrios, K.A. Gray, E. Weitz: Langmuir 19, 1402 (2003). (b) ibid. 19, 5178 (2003).CrossRefGoogle Scholar
  76. 76.
    M.A. Fox, M.T. Dulay: Chem. Rev. 93, 341 (1993).CrossRefGoogle Scholar
  77. 77.
    A. Hagfeldt, M. Grätzel: Chem. Rev. 95, 49 (1995).CrossRefGoogle Scholar
  78. 78.
    A. Mills, S. Le Hunte: J. Photochem. Photobiol. A 108, 1 (1997).CrossRefGoogle Scholar
  79. 79.
    R.R. Bacsa, J. Kiwi: Appl. Catal. B 16, 19 (1998).CrossRefGoogle Scholar
  80. 80.
    (a) T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto: Thin Solid Films 351, 260 (1999). (b) T. Sumita, T. Yamaki, S. Yamamoto, A. Miyashita: Appl. Surf. Sci. 200, 21 (2002).CrossRefGoogle Scholar
  81. 81.
    (a) U. Stafford, K.A. Gray, P.V. Kamat, A. Varma: Chem. Phys. Lett. 205, 55 (1993). (b) G. Riegel, J.R. Bolton: J. Phys. Chem. 99, 4215 (1995).CrossRefGoogle Scholar
  82. 82.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann: Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
  83. 83.
    S. Sato: Chem. Phys. Lett. 123, 126 (1986).CrossRefGoogle Scholar
  84. 84.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga: Science 293, 269 (2001).CrossRefGoogle Scholar
  85. 85.
    S. Sakthivel, M. Janczarek, H. Kisch: J. Phys. Chem. B 108, 19384 (2004).CrossRefGoogle Scholar
  86. 86.
    H. Irie, Y. Watanabe, K. Hashimoto: J. Phys. Chem. B 107, 5483 (2003).CrossRefGoogle Scholar
  87. 87.
    O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck, J.T. Yates Jr.: J. Phys. Chem. B 108, 6004 (2004).CrossRefGoogle Scholar
  88. 88.
    M. Miyauchi, A. Ikezawa, H. Tobimatsu, H. Irie, K. Hashimoto: Phys. Chem. Chem. Phys. 6, 865 (2004).CrossRefGoogle Scholar
  89. 89.
    J.L. Gole, J.D. Stout, C. Burda, Y. Lou, X. Chen: J. Phys. Chem. B 108, 1230 (2004).CrossRefGoogle Scholar
  90. 90.
    Z. Lin, A. Orlov, R.M. Lambert, M.C. Payne: J. Phys. Chem. B 109, 20948 (2005).CrossRefGoogle Scholar
  91. 91.
    S. Sato, R. Nakamura, S. Abe: Appl. Catal. B 284, 131 (2005).CrossRefGoogle Scholar
  92. 92.
    M. Sathish, B. Viswanathan, R.P. Viswanath, C.S. Gopinath: Chem. Mater. 17, 6349 (2005).CrossRefGoogle Scholar
  93. 93.
    M. Alvaro, E. Carbonell, V. Fornés, H. Garcia: Chem. Phys. Chem. 7, 200 (2006).CrossRefGoogle Scholar
  94. 94.
    Y. Nosaka, M. Matsushita, J. Nasino, A.Y. Nosaka: Sci. Technol. Adv. Mater. 6, 143 (2005).CrossRefGoogle Scholar
  95. 95.
    Y. Irokawa, T. Morikawa, K. Aoki, S. Kosaka, T. Ohwaki, Y. Taga: Phys. Chem. Chem. Phys. 8, 1116 (2008).CrossRefGoogle Scholar
  96. 96.
    S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. Di Valentin, G. Pacchioni: J. Am. Chem. Soc. 128, 15666 (2006).CrossRefGoogle Scholar
  97. 97.
    P.F. Cornaz, J.H.C. Van Hooff, F.J. Pluijm, G.C.A. Schuit: Discuss. Faraday Soc. 41, 290 (1966).CrossRefGoogle Scholar
  98. 98.
    R.D. Iyenger, M. Codell: Adv. Colloid Interface Sci. 3, 365 (1972).CrossRefGoogle Scholar
  99. 99.
    R.F. Howe, M. Grätzel: J. Phys. Chem. 89, 4495 (1985).CrossRefGoogle Scholar
  100. 100.
    Y. Nakaoka, Y. Nosaka: J. Photochem. Photobiol. A 110, 299 (1997).CrossRefGoogle Scholar
  101. 101.
    S.W. Ahn, L. Kevan: J. Chem. Soc. Faraday Trans. 94, 3147 (1998).CrossRefGoogle Scholar
  102. 102.
    S. Livraghi, A. Votta, M.C. Paganini, E. Giamello: Chem. Commun. 4, 498 (2005).CrossRefGoogle Scholar
  103. 103.
    T.L. Ma, M. Akiyama, E. Abe, I. Imai: Nano Lett. 5, 2543 (2005).CrossRefGoogle Scholar
  104. 104.
    C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello: J. Phys. Chem. B 109, 11414 (2005).CrossRefGoogle Scholar
  105. 105.
    C. Di Valentin, G. Pacchioni, A. Selloni: Phys. Rev. B 70, 085116 (2004).CrossRefGoogle Scholar
  106. 106.
    Y. Itagaki, K. Nomura, M. Shiotani, A. Lund: Phys. Chem. Chem. Phys. 3, 4444 (2001).CrossRefGoogle Scholar
  107. 107.
    A. Heller: Acc. Chem. Res. 28, 503 (1995).CrossRefGoogle Scholar
  108. 108.
    D.-R. Park, J. Zhang, K. Ikeue, H. Yamashita, M. Anpo: J. Catal. 185, 114 (1999).CrossRefGoogle Scholar
  109. 109.
    J. Yang, C. Chen, H. Ji, W. Ma, J. Zhao: J. Phys. Chem. B 109, 21900 (2005).CrossRefGoogle Scholar
  110. 110.
    M. Stylidi, D. Kondarides, X.E. Verykios: Appl. Catal. B 47, 189 (2004).CrossRefGoogle Scholar
  111. 111.
    (a) K. Komaguchi, T. Maruoka, H. Nakano, I. Imae, Y. Ooyama, Y. Harima: J. Phys. Chem. C 113, 1160 (2009). (b) ibid. C 114, 1240 (2010).CrossRefGoogle Scholar
  112. 112.
    E. Carter, A.F. Carley, D.M. Murphy: J. Phys. Chem. C 111, 10630 (2007).CrossRefGoogle Scholar
  113. 113.
    M.P. De Lara-Castells, J.L. Krause: Chem. Phys. Lett. 354, 483 (2002).CrossRefGoogle Scholar
  114. 114.
    D.N. Mirlin, I.I. Reshina, L.S. Sochava: Sov. Phys. Solid State 11, 1995 (1970).Google Scholar
  115. 115.
    T. Sekiya, K. Ichimura, M. Igarashi, S. Kurita: J. Phys. Chem. Solids 61, 1237 (2000).CrossRefGoogle Scholar
  116. 116.
    V.N. Kuznetsov, T.K. Krutitskaya: Kinet. Catal. 37, 446 (1996).Google Scholar
  117. 117.
    J. Chen, L.-B. Lin, F.-Q. Wing: J. Phys. Chem. Solids 62, 1257 (2001).CrossRefGoogle Scholar
  118. 118.
    (a) A.A. Lisachenko, V.N. Kuznetsov, M.N. Zakharov, R.V. Mikhailov: Kinet. Catal. 45, 189 (2004). (b) A.A. Lisachenko, R.V. Mikhailov: Tech. Phys. Lett. 1, 21 (2005).CrossRefGoogle Scholar
  119. 119.
    S.W. Ahn, L. Kevan: J. Chem. Soc. Faraday Trans. 94, 3147 (1998).CrossRefGoogle Scholar
  120. 120.
    J. Jia, T. Ohno, M. Matsumura: Chem. Lett. 908 (2000).Google Scholar
  121. 121.
    K. Komaguchi, H. Nakano, A. Arakia, Y. Harima: Chem. Phys. Lett. 428, 338 (2006).CrossRefGoogle Scholar
  122. 122.
    Y. Nakaoka, Y. Nosaka, J. Photochem. Photobiol. A 110, 299 (1997).CrossRefGoogle Scholar
  123. 123.
    S. Leytner, J.T. Hupp: Chem. Phys. Lett. 330, 231 (2000).CrossRefGoogle Scholar
  124. 124.
    W. Känzig, M.H. Cohen: Phys. Rev. Lett. 3, 509 (1959).CrossRefGoogle Scholar
  125. 125.
    M. Shiotani, G. Moro, J.H. Freed: J. Chem. Phys. 74, 2616 (1981).CrossRefGoogle Scholar
  126. 126.
    K. Tatsumi, M. Shiotani, J.H. Freed: J. Phys. Chem. 87, 3425 (1983).CrossRefGoogle Scholar
  127. 127.
    C. Heller, H.M. McConnell: J. Chem. Phys. 32, 1535 (1960).CrossRefGoogle Scholar
  128. 128.
    M. Mikami, S. Nakamura, O. Kitao, H. Arakawa, X. Gonze: Jpn. J. Appl. Phys. 39, 847 (2000).CrossRefGoogle Scholar
  129. 129.
    H. Tang, H. Berger, P.E. Schmid, F. Lévy, G. Burri: Solid State Commun. 23, 161 (1977).CrossRefGoogle Scholar
  130. 130.
    V.E. Henrich, R.L. Kurtz: Phys. Rev. B 23, 6280 (1981).CrossRefGoogle Scholar
  131. 131.
    R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman: Phys. Rev. B 61, 7459 (2000).CrossRefGoogle Scholar
  132. 132.
    J.C. Woicik, E.J. Nelson, L. Kronik, M. Jain, J.R. Chelikowsky, D. Heskett, L.E. Berman, G.S. Herman: Phys. Rev. Lett. 89, 077401 (2002).CrossRefGoogle Scholar
  133. 133.
    R. Sanjinés, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, F. Lévy: J. Appl. Phys. 75, 2945 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anders Lund
    • 1
  • Masaru Shiotani
    • 2
  • Shigetaka Shimada
    • 3
  1. 1.Department of Physics, Chemistry and Biology, IFMLinkoping UniversityLinkopingSweden
  2. 2.Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Graduate School of EngineeringNagoya Institute of TechnologyOwari-AsahiJapan

Personalised recommendations