Advertisement

The scattering map in the planar restricted three body problem

  • E. Canalias
  • A. Delshams
  • J. J. Masdemont
  • P. Roldán
Conference paper

Abstract

We study homoclinic transport to Lyapunov orbits around a collinear libration point in the planar restricted three body problem. A method to compute homoclinic orbits is first described. Then we introduce the scattering map for this problem (defined on a suitable normally hyperbolic invariant manifold) and we show how to compute it using the information already obtained for the homoclinic orbits. An example application to Astrodynamics is also proposed.

Keywords

Restricted three body problem Homoclinic orbits Normally hyperbolic invariant manifolds Scattering map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breakwell, J.V., Kamel, A.A., Ratner, M.J.: Station-keeping for a translunar communication station. Celestial Mech. 10, 357–373 (1974)CrossRefADSMathSciNetGoogle Scholar
  2. Canalias, E., Masdemont, J.J.: Lunar space station for providing services to solar libration point missions. In 56th International Astronautical Federation Congress, Fukuoka, Japan (2005)Google Scholar
  3. Canalias, E., Masdemont, J.J.: Homoclinic and heteroclinic transfer trajectories between Lyapunov orbits in the Sun—Earth and Earth—Moon Systems. Discrete Contin. Dyn. Syst. 14, 261–279 (2006)MathSciNetzbMATHGoogle Scholar
  4. Delshams, A., de la Llave, R.: KAM theory and a partial justification of Greene’s criterion for nontwist maps. SIAM J. Math. Anal. 31(6), 1235–1269 (2000a)CrossRefMathSciNetzbMATHGoogle Scholar
  5. Delshams, A., de la Llave, R., Seara, T.M.: A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of T2. Comm. Math. Phys. 209(2), 353–392 (2000b)ADSMathSciNetzbMATHGoogle Scholar
  6. Delshams, A., de la Llave, R., Seara, T.M.: A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model. Mem. Amer. Math. Soc. 179(844), 1–141 (2006)Google Scholar
  7. Farquhar, R.W.: A halo orbit lunar station. Astronautics and Aeronautics 10(6), 52–63 (1972)Google Scholar
  8. Gómez, G., Jorba, A., Masdemont, J.J., Simó, C.: A dynamical systems approach for the analysis of the SOHO mission. Third International Symposium on Spacecraft Flight Dynamics, ESA/ESOC, pp. 449–454, (1991)Google Scholar
  9. Masdemont, J.J.: High-order expansions of invariant manifolds of libration point orbits with applications to mission design. Dyn. Syst. 20(1), 59–113 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. Robinson, C.: Dynamical systems. Studies in Advanced Mathematics 2nd edn. Stability, symbolic dynamics and chaos, CRS Press, Boca Raton (1999)Google Scholar
  11. Szebehely, V.: Theory of orbits. Academic Press, New York (1967)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • E. Canalias
    • 1
  • A. Delshams
    • 1
  • J. J. Masdemont
    • 1
  • P. Roldán
    • 1
  1. 1.Departament de Matemàtica Aplicada IETSEIB-UPCBarcelonaSpain

Personalised recommendations