Advertisement

KAM tori for N-body problems: a brief history

  • A. Celletti
  • L. Chierchia
Conference paper

Abstract

We review analytical (rigorous) results about the existence of invariant tori for planetary many-body problems.

Keywords

Computer-assisted proofs Invariant tori KAM theory N-body problem Small divisor problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V.I.: Small denominators and problems of stability of motion in classical and celestial mechanics. Uspehi Mat. Nauk. 18(6) (114), 91–192 (1963)MathSciNetGoogle Scholar
  2. Biasco, L., Chierchia, L., Valdinoci, E.: Elliptic two-dimensional invariant tori for the planetary three-body problem. Arch. Rational Mech. Anal. 170, 91–135 (2003)CrossRefADSMathSciNetzbMATHGoogle Scholar
  3. Biasco, L., Chierchia, L., Valdinoci, E.: N-dimensional invariant tori for the planar (N + 1)-body problem. SIAM J. Math. Anal. 37, 1560–1580 (Preprint downloadable in http://www.mat.uniroma3.it/users/chierchia/WWW/english_version.html). (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  4. Bost, J.B.: Tores invariants des systèmes dynamiques hamiltoniens’, (d’aprés Kolmogorov, Arnol’d, Moser, Rüssmann, Zehnder, Herman, Pöschel,...) Sémin. Bourbaki, 1984/85, (Astérisque 133–134), 113–157 (1986)MathSciNetGoogle Scholar
  5. Celletti, A.: Analysis of resonances in the spin-orbit problem in celestial mechanics: the synchronous resonance (Part I). J. Appl. Math. Phys. (ZAMP). 41, 174–204 (1990a)CrossRefMathSciNetzbMATHGoogle Scholar
  6. Celletti, A.: Analysis of resonances in the spin-orbit problem in celestial mechanics: higher order resonances and some numerical experiments (Part II). J. Appl.Math. Phys (ZAMP). 41, 453–479 (1990b)CrossRefMathSciNetzbMATHGoogle Scholar
  7. Celletti, A.: Construction of librational invariant tori in the spin-orbit problem. J. Appl. Math. Phys. (ZAMP). 45, 61–80 (1993)CrossRefMathSciNetGoogle Scholar
  8. Celletti, A., Chierchia, L.: Rigorous estimates for a computer-assisted KAM theory. J. Math. Phys. 28 2078–2086 (1987)CrossRefADSMathSciNetzbMATHGoogle Scholar
  9. Celletti, A., Chierchia, L.: Construction of analytic KAM surfaces and effective stability bounds. Commun. Math. Phys. 118, 119–161 (1988)CrossRefADSMathSciNetzbMATHGoogle Scholar
  10. Celletti, A., Chierchia, L.: A constructive theory of Lagrangian tori and computer-assisted applications. In: Jones, C.K.R.T., Kirchgraber, U., Walther, H.O. (eds.), Dynamics Reported. vol. 4 Springer-Verlag, Berlin, (New Series), pp. 60–129 (1995)Google Scholar
  11. Celletti, A., Chierchia, L.: On the stability of realistic three-body problems. Commun. Math. Phys. 186, 413–449 (1997)CrossRefADSMathSciNetzbMATHGoogle Scholar
  12. Celletti, A., Chierchia, L.: KAM stability and celestial mechanics. Memoirs AMS, to appear. Preprint downloadable in http://www.mat.uniroma3.it/users/chierchia/WWW/english_version.html. (2005)Google Scholar
  13. Celletti, A., Falcolini, C.: Construction of invariant tori for the spin-orbit problem in the Mercury-Sun system. Celestial Mech. Dyn. Astronom. 53, 113–127 (1992)CrossRefADSMathSciNetzbMATHGoogle Scholar
  14. Celletti, A., Falcolini, C., Porzio, A.: Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum. Ann. Inst. H. Poincaré. 47, 85–111 (1987)MathSciNetzbMATHGoogle Scholar
  15. Celletti, A., Froeschlé, C., Lega, E.: Frequency analysis of the stability of asteroids in the framework of the restricted, three-body problem. Celest. Mech. Dyn. Astr. 90(3–4), 245–266 (2004)CrossRefADSzbMATHGoogle Scholar
  16. Celletti, A., Giorgilli, A.: On the numerical optimization of KAM estimates by classical perturbation theory. J. Appl. Math. Phys (ZAMP). 39, 743–747 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  17. Celletti, A., Giorgilli, A., Locatelli, U.: Improved estimates on the existence of invariant tori for Hamiltonian systems. Nonlinearity. 13(2), 397–412 (2000)CrossRefADSMathSciNetzbMATHGoogle Scholar
  18. Chierchia, L.: KAM theory and celestial mechanics. Encyclopedia Math Phys (to appear). Preprint downloadable in http://www.mat.uniroma3.it/users/chierchia/WWW/english_version.html (2005)Google Scholar
  19. Féjoz, J.: Démonstration du théorème d’Arnold sur la stabilité du système planétaire (d’après Michael Herman). Ergod. Th. Dyn. Sys. 24, 1–62 (2004)CrossRefGoogle Scholar
  20. Herman, M.R.: Démonstration d’un théorème de V.I. Arnold Various seminars at University of Paris. Jussieu and manuscripts. (1998)Google Scholar
  21. Hénon, M.: Explorationes numérique du problème restreint IV: masses egales, orbites non periodique. Bull. Astronom. 3(1, fasc. 2), 49–66 (1966)Google Scholar
  22. Kolmogorov, A.N.: On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian. Dokl. Akad. Nauk. SSR. 98, 527–530 (1954)MathSciNetzbMATHGoogle Scholar
  23. Laskar, J.: Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Physica D. 67, 257. (1993)CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. Laskar, J., Froeschlé, C., Celletti, A.: The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping. Physica D. 56, 253–269 (1992)CrossRefADSMathSciNetzbMATHGoogle Scholar
  25. Laskar, J., Robutel, P.: Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian. Celest. Mech. Dyn. Astr. 62(3), 193–217 (1995)CrossRefADSMathSciNetzbMATHGoogle Scholar
  26. de la Llave, R., Rana, D.: Accurate strategies for small divisor problems. Bull. Am. Math. Soc. (N. S.) 22(1), 85–90 (1990)zbMATHCrossRefGoogle Scholar
  27. Locatelli, U., Giorgilli, A.: Invariant tori in the secular motions of the three-body planetary systems. Celest. Mech. Dyn. Astr. 78, 47–74 (2000)CrossRefADSMathSciNetzbMATHGoogle Scholar
  28. Locatelli, U., Giorgilli, A.: Construction of the Kolmogorov’s normal form for a planetary system. Regular Chaotic Dyn. 10(2), 153–171 (2005a)CrossRefMathSciNetzbMATHADSGoogle Scholar
  29. Locatelli, U., Giorgilli, A.: Invariant tori in the Sun-Jupiter-Saturn system, Preprint (2005b)Google Scholar
  30. Pyartli, A.S.: Diophantine approximations on Euclidean submanifolds; (in Russian) Funckcional. Anal. i Prilozen. 3, 59–62; (in English) Funct. Anal. Appl. 3, 303–306 (1969)Google Scholar
  31. Rana, D.: Proof of accurate upper and lower bounds to stability domains in small denominator problems. Ph.D. thesis, Princeton University Press, Princeton, NJ (1987)Google Scholar
  32. Robutel, P.: Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions. Celest. Mech. Dyn. Astr. 62(3), 219–261 (1995)CrossRefADSMathSciNetzbMATHGoogle Scholar
  33. Rüssmann, H.: Invariant tori in non-degenerate nearly-integrable Hamiltonian systems, Regul. Chaotic Dyn. 6, 119–204 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  34. Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Springer-Verlag, Berlin (1971)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • A. Celletti
    • 1
  • L. Chierchia
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma Tor VergataRomaItaly
  2. 2.Dipartimento di MatematicaUniversità “Roma Tre”RomaItaly

Personalised recommendations