Collision risk against space debris in Earth orbits

  • A. Rossi
  • G. B. Valsecchi
Conference paper


Öpik’s formulae for the probability of collision are applied to the analysis of the collision risk against space debris in Low-Earth Orbit (LEO) and Medium Earth Orbit. The simple analytical formulation of Öpik’s theory makes it applicable to complex dynamical systems, such as the interaction of the ISS with the whole debris population in LEO The effect of a fragmentation within a multiplane constellation can also be addressed. The analysis of the evolution of the collision risk in Earth orbit shows the need of effective mitigation measures to limit the growth of the collision risk and of the fragmentation debris in the next century.


Space debris Impact risk Öpik theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alby, F., Lansard, E., Michal, T.: Collision of Cerise with space debris. In: Proceedings of the Second European Conference on Space Debris. Proceedings ESA SP-393, pp. 589–594. Noordwijk, Netherlands (1997)Google Scholar
  2. Chao, C.C., Gick, R.A.: Long-term evolution of navigation satellite orbits: GPS/GLONASS/GALILEO. Adv. Space Res. 34, 1221–1226 (2004)CrossRefADSGoogle Scholar
  3. Cordelli, A., Farinella, P., Rossi, A.: The influence of the fragmentation threshold on the long-term evolution of the orbital debris population. Planet. Space. Sci. 46, 691–699 (1998)CrossRefADSGoogle Scholar
  4. Foster, J.L., Jr.: The analytic basis for debris avoidance operations for the International Space Station. In: Proceedings of the Third European Conference on Space Debris. Proceedings ESA SP-473, pp. 441–445. Noordwijk, Netherlands (2001)Google Scholar
  5. Öpik, E.J.: Interplanetary Encounters. Elsevier, New York, USA (1976)Google Scholar
  6. Rossi, A., Farinella, P.: Collision rates and impact velocities for bodies in low Earth orbit. ESA J. 16, 339–348 (1992)ADSGoogle Scholar
  7. Rossi, A., Cordelli, A., Farinella, P., Anselmo, L.: Collisional evolution of the Earth’s orbital debris cloud. J. Geophys. Res. 99(E11), 23195–23210 (1994)CrossRefADSGoogle Scholar
  8. Rossi, A., Anselmo, L., Cordelli, A., Farinella, P., Pardini, C.: Modelling the evolution of the space debris population. Planet. Space Sci. 46, 1583–1596 (1998)CrossRefADSGoogle Scholar
  9. Rossi, A., Valsecchi, G.B., Farinella, P.: Risk of collision for constellation satellites, Nature 399, 743–744 (1999)CrossRefADSGoogle Scholar
  10. Rossi, A., Valsecchi, G.B.: Self generated debris hazard for satellite constellations. In: Second International Workshop on: Satellite Constellations and Formation flying. Haifa, Israel. February 19–20, 2001Google Scholar
  11. Rossi, A., Valsecchi, G.B., Perozzi, E.: Risk of collision for the navigation constellations: the case of the forthcoming Galileo. J. Astron. Sci. 52, 455–474 (2004)Google Scholar
  12. Valsecchi, G.B., Rossi, A., Farinella, P.: Visualizing impact probabilities of space debris. Space Debris, 1(2), 143–158 (2000)CrossRefGoogle Scholar
  13. Valsecchi, G.B., Rossi, A.: Analysis of the space debris impact risk on the International Space Station. Celest. Mech. Dyn. Astron 83, 63–76 (2002)CrossRefADSzbMATHGoogle Scholar
  14. Valsecchi G.B., Farinella, P., Rossi, A.: Collision risk: a new method for assessing and visualizing it. Acta Astron. 53, 203–217 (2003)Google Scholar
  15. Wetherill, G.W.: Collisions in the asteroid belt. J. Geophys. Res. 72, 2429–2444 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • A. Rossi
    • 1
  • G. B. Valsecchi
    • 2
  1. 1.ISTI-CNRPisaItaly
  2. 2.IASF-INAFRomaItaly

Personalised recommendations