Symmetric and asymmetric librations in extrasolar planetary systems: a global view

  • John D. Hadjidemetriou
Conference paper


We present a global view of the resonant structure of the phase space of a planetary system with two planets, moving in the same plane, as obtained from the set of the families of periodic orbits. An important tool to understand the topology of the phase space is to determine the position and the stability character of the families of periodic orbits. The region of the phase space close to a stable periodic orbit corresponds to stable, quasi periodic librations. In these regions it is possible for an extrasolar planetary system to exist, or to be trapped following a migration process due to dissipative forces. The mean motion resonances are associated with periodic orbits in a rotating frame, which means that the relative configuration is repeated in space. We start the study with the family of symmetric periodic orbits with nearly circular orbits of the two planets. Along this family the ratio of the periods of the two planets varies, and passes through rational values, which correspond to resonances. At these resonant points we have bifurcations of families of resonant elliptic periodic orbits. There are three topologically different resonances: (1) the resonances (n + 1):n, (2:1, 3:2, ...), (2) the resonances (2n + 1):(2n − 1t), (3:1, 5:3, ...) and (3) all other resonan topology at each one of the above three types of resonances is studied, for different values of the sum and of the ratio of the planetary masses. Both symmetric and asymmetric resonant elliptic periodic orbits exist. In general, the symmetric elliptic families bifurcate from the circular family, and the asymmetric elliptic families bifurcate from the symmetric elliptic families. The results are compared with the position of some observed extrasolar planetary systems. In some cases (e.g., Gliese 876) the observed system lies, with a very good accuracy, on the stable part of a family of resonant periodic orbits.


Periodic orbits Resonances Extrasolar planetary systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beauge, C., Ferraz-Mello, S., Michtchenko, T.: Extrasolar planets in mean-motion resonance: apses alignment and asymmetric stationary solutions. ApJ 593, 1124 (2003)CrossRefADSGoogle Scholar
  2. Beauge, C., Michtchenko, T., Ferraz-Mello, S.: Stationary solutions in resonant extrasolar systems. MNRAS, 365, 1160–1170 (2006)CrossRefADSGoogle Scholar
  3. Beauge, C., Callegari, N., Ferraz-Mello, S., Michtchenko, T.: Resonances and stability of extra-solar planetary systems. In: Knezevic Z., Milani A. (eds.) Dynamics of Populations of Planetary Systems. Cambridge University Press, Cambridge, p. 3Google Scholar
  4. Ferraz-Mello, S., Beaugé, C., Michtchenko T.: Evolution of migrating planet pairs in resonance, Cel. Mech. Dyn. Astr. 87, 99–112 (2003)CrossRefADSGoogle Scholar
  5. Fischer, D., Marcy, G., Buttler, P., Laughlin, G., Vogt, S.: A second planet orbiting 47 UMa. ApJ 564, 1028 (2002)CrossRefADSGoogle Scholar
  6. Gozdziewski, K., Bois, E., Maciejewski, A.: Global dynamics of the Gliese 876 planetary system. MNRAS 332, 839 (2002)CrossRefADSGoogle Scholar
  7. Hadjidemetriou, J.D.: The continuation of periodic orbits from the restricted to the general three-body problem. Cel. Mech. Dyn. Astr. 12, 155–174 (1975)MathSciNetzbMATHGoogle Scholar
  8. Hadjidemetriou, J.D.: Families of periodic planetary type orbits in the three-body problem and their stability. Astrophys. Sp. Sci. 40, 201–224 (1976)CrossRefADSMathSciNetzbMATHGoogle Scholar
  9. Hadjidemetriou, J.D.: On the relation between resonance and instability in planetary systems. Cel. Mech. Dyn. Astr. 27, 305–322 (1982)MathSciNetzbMATHGoogle Scholar
  10. Hadjidemetriou, J.D.: Resonant periodic motion and the stability of extrasolar planetary systems. Cel. Mech. Dyn. Astr. 83, 141–154 (2002)CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. Hadjidemetriou, J.D.: Periodic orbits in gravitational systems. In: Proceedings of the Cortina meeting 2004, 2006Google Scholar
  12. Hadjidemetriou, J.D., Psychoyos, D.: Dynamics of extrasolar planetary systems: 2/1 resonant motion. In: G. Contopoulos and N. Voglis (eds.), Lecture Notes in Physics: Galaxies and Chaos, Vol. 626, pp. 412–432, Springer-Verlag, Berlin (2003)Google Scholar
  13. Israelian, G., Santos, N., Mayor, M., Rebolo, R.: Evidence for planet engulfment by the star HD82943. Nature 411, 163 (2001)CrossRefADSGoogle Scholar
  14. Ji, J., Liu, L., Kinoshita, H., Zhou, J., Nakai, H., Li, G.: The librating companions in HD 37124, HD 12661, HD 82943, 47 Uma and GJ 876: alignment or antialignment? ApJ 591, L57–L60 (2003a)CrossRefADSGoogle Scholar
  15. Ji, J., Kinoshita, H., Liu, L., Li, G., Nakai, H.: The apsidal antialignment of the HD 82943 system. Cel. Mech. Dyn. Astron. 87, 113–120 (2003b)CrossRefADSzbMATHGoogle Scholar
  16. Lee, M.H., Peale, S.: Dynamic and origin of the 2:1 orbital resonances of the GJ 876 planets. ApJ 567, 596–609 (2002)CrossRefADSGoogle Scholar
  17. Lee, M.H., Peale, S.J.: Extrasolar planets and mean motion resonances. In Deming, D., Seager, S. (eds) Scientific Frontiers in Research of Extrasolar planets. ASP, 197 (2003)Google Scholar
  18. Lee, M.H.: Diversity and origin of 2:1 orbital resonance in extrasolar planetary systems. ApJ 611, 517 (2004)CrossRefADSGoogle Scholar
  19. Malhotra, R.: A dynamical mechanism for establishing apsidal resonance. ApJ 575, L33–36 (2002)CrossRefADSGoogle Scholar
  20. Marcy, G., Butler, P., Fischer, D., Vogt, S., Lissauer, J., Rivera, E.: A Pair of resonant planets orbiting GJ 876, ApJ 556, 296 (2001)CrossRefADSGoogle Scholar
  21. Marcy, G.W., Butler, R.P., Fischer, D.A., Laughlin, G., Vogt, S.S., Henry, G.W., Pourbaix, D.: A planet at 5AU around 55Cnc. ApJ 581, 1375–1388 (2002)CrossRefADSGoogle Scholar
  22. Mayor, M., Udry, S., Naef, D., Pepe, F., Queloz, D., Santos, N.C., Burnet, M.: The CORALIE survey for southern extra-solar planets. XII. Orbital solutions for 16 extra-solar planets discovered with CORALIE. A&A 415, 291 (2004)CrossRefADSGoogle Scholar
  23. Nelson, R., Papaloizou, J.C.B.: Possible commensurabilities among pairs of extrasolar planets. MNRAS 333, 25–30 (2002)CrossRefGoogle Scholar
  24. Peale, S., Lee, M.: Extrasolar planets and the 2:1 orbital resonances, In DDA 33rd Meeting, BAAS 34, 933 (2002)Google Scholar
  25. Psychoyos, D., Hadjidemetriou, J.D.: Dynamics of 2/1 resonant extrasolar systems. Application to HD82943 and Gliese876. Cel. Mech. Dyn. Astr. 92, 135–156 (2005)CrossRefADSMathSciNetzbMATHGoogle Scholar
  26. Rivera, E.J., Lissauer, J.J.: Dynamical models of the resonant pair of planets orbiting the star GJ 876, ApJ 558, 392–402 (2001)CrossRefADSGoogle Scholar
  27. Schneider, J.:, (2006)Google Scholar
  28. Voyatzis, G., Hadjidemetriou, H.D.: Symmetric and asymmetric librations in planetary and satellite systems at the 2/1 resonance. Cel. Mech. Dyn. Astr. 93, 263–294 (2005)CrossRefADSMathSciNetzbMATHGoogle Scholar
  29. Voyatzis, G., Hadjidemetriou, H.D.: Symmetric and asymmetric 3:1 resonant periodic orbits: an application to the 55Cnc extra-solar system. Cel. Mech. Dyn. Astr. this issue (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • John D. Hadjidemetriou
    • 1
  1. 1.Department of PhysicsUniversity of ThessalonikiThessalonikiGreece

Personalised recommendations