Skip to main content

Nucleosynthesis in nova explosions: Prospects for its observation with focusing telescopes

  • Chapter
  • 622 Accesses

Abstract

Nova explosions are caused by the explosive burning of hydrogen in the envelope of accreting white dwarfs. During the thermonuclear runaway some radioactive isotopes are synthesized, which emit γ -rays when they decay. The γ -ray signatures of a nova explosion still remain undetected, because even the best instruments like SPI onboard INTEGRAL are not sensitive enough for the dim and broad lines emitted by novae at their typical distances. A very different situation is expected with a focusing telescope, like MAX. Prospects for detectability with a future γ -ray lens telescope are presented, with a special emphasis on the important information that γ -rays would provide about the explosion mechanism and the underlying white dwarf star.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexakis, A. et al.: On heavy element enrichment in classical novae. Astrophys. J. 602, 931–937 (2004)

    Article  ADS  Google Scholar 

  2. Clayton, D.D.: Principles of stellar evolution and nucleosynthesis. Mc.Graw-Hill (1968)

    Google Scholar 

  3. Clayton, D.D.: 7Li gamma-ray lines from novae. Astrophys. J. 244, L97–L98 (1981)

    Article  ADS  Google Scholar 

  4. Clayton, D.D., Hoyle, F.: Gamma-ray lines from novae. Astrophys. J. 187, L101–L103 (1974)

    Article  ADS  Google Scholar 

  5. Diehl, R., et al.: COMPTEL observations of Galactic 26Al emission. Astron. & Astrophys. 298, 445–460 (1995)

    ADS  Google Scholar 

  6. Domínguez, I., Tornambé, A., Isern, J.: On the formation of O-Ne white dwarfs in metal-rich close binary systems. Astrophys. J. 419, 268–275 (1993)

    Article  ADS  Google Scholar 

  7. Gallagher, G.S., Code, A.D.: Ultraviolet photometry from the orbiting astronomical observatory. X.Nova FH SER 197. Astrophys. J. 189, 303–314 (1974)

    Article  ADS  Google Scholar 

  8. Gil-Pons, P., García-Berro, E., José, J., Hernanz, M., Truran, J.W.: The frequency of occurrence of novae hosting an ONe white dwarf. Astron. & Astrophys. 407, 1021–1028 (2003)

    Article  ADS  Google Scholar 

  9. Gehrz, R., Truran, J.W., Williams, R.E., Starrfield, S.E.: Nucleosynthesis in classical novae and its contribution to the interstellar medium. Pub. Astron. Soc. Pacific 110, 3–26 (1998)

    Article  ADS  Google Scholar 

  10. Harris, M.J., Knödlseder, J., Jean, P., Cisana, E., Diehl, R., Lichti, G.G., Roques, J.-P., Schanne, S., Weidenspointner, G.: Detection of gamma-ray lines from interstellar 60Fe by the high resolution spectrometer SPI. Astron. & Astrophys. 433, L49–L52 (2005)

    Article  ADS  Google Scholar 

  11. Gómez-Gomar, J., Hernanz, M., José, J., Isern, J.: Gamma-ray emission from individual classical novae. Month. Not. R.A.S. 296, 913–920 (1998)

    Article  ADS  Google Scholar 

  12. Hernanz, M., José, J., Coc, A., Isern, J.: On the synthesis of 7Li and 7Be in novae. Astrophys. J. 465, L27–L30 (1996)

    Article  ADS  Google Scholar 

  13. Hernanz, M., José, J., Coc, A., Gómez-Gomar, J., Isern, J., Gamma-ray emission fom novae related to positron annihilation: constraints on its observability posed by new experimental nuclear data. Astrophys. J. 526, L97–L100 (1999)

    Article  ADS  Google Scholar 

  14. Hernanz, M., José, J.: γ-rays from classical novae: expectations from present and future missions. New Astron. Rev. 48, 35–39 (2004)

    Article  ADS  Google Scholar 

  15. José, J., Hernanz, M.: Nucleosynthesis in classical novae: CO versus ONe white dwarfs. Astrophys. J. 494, 680–690 (1998)

    Article  ADS  Google Scholar 

  16. José, J., Hernanz, M., Coc, A.: New results on 26Al production in classical novae. Astrophys. J. 479, L55–L58 (1997)

    Article  ADS  Google Scholar 

  17. José, J., Coc, A., Hernanz, M.: Nuclear uncertainties in the NeNa-MgAl cycles and production of 22Na and 26Al during nova outburts. Astrophys. J. 520, 347–360 (1999)

    Article  ADS  Google Scholar 

  18. José, J., Hernanz, M., García-Berro, E., Gil-Pons, P.: The impact of the chemical stratification of white dwarfs on the classification of classical novae. Astrophys. J. 597, L41–L44 (2003)

    Article  ADS  Google Scholar 

  19. Leising, M.D., Clayton, D.D.: Positron annihilation gamma-rays from novae. Astrophys. J. 323, 159–169 (1987)

    Article  ADS  Google Scholar 

  20. Limongi, M., Chieffi, A.: New Astron. Rev. in press (2006)

    Google Scholar 

  21. Mahoney, W.A., Ling, J.C., Wheaton, W.A., Jacobson, A.S.: HEAO 3 discovery of 26Al in the interstellar medium. Astrophys. J. 286, 578–585 (1984)

    Article  ADS  Google Scholar 

  22. Prantzos, N.: Radioactive 26Al and 60Fe in the Milky Way: Implications of the RHESSI detection of 60Fe. Astron. & Astrophys. 420, 1033–1037 (2004)

    Article  ADS  Google Scholar 

  23. Prantzos, N., Diehl, R.: Radioactive 26Al in the galaxy: observations versus theory. Phys. Rep. 267, 1–69 (1996)

    Article  ADS  Google Scholar 

  24. Ritossa, C., García-Berro, E., Iben, I.: On the evolution of stars that form electron-degenerate cores processed by carbon burning. II. Isotope abundances and thermal pulses in a 10 M model with an ONe core and applications to long-period variables, classical novae, and accretion-induced collapse. Astrophys. J. 460, 489–505 (1996)

    Article  ADS  Google Scholar 

  25. Shafter, A.W.: On the nova rate in the galaxy. Astrophys. J. 487, 226–236 (1997)

    Article  ADS  Google Scholar 

  26. Shafter, A.W. (2002).: The Galactic nova rate, in Classical Nova Explosions, AIP CP 637, New York. p. 462–471 (2002)

    Google Scholar 

  27. Smith, D.M.: The Reuven Ramaty High Energy Solar Spectroscopic Imager Observation of the 1809 keV Line from Galactic 26Al. Astrophys. J. 589, L55–L58 (2003)

    Article  ADS  Google Scholar 

  28. Snijders, M.A.J., Batt, T.J., Roche, P.F., Seaton, M.J., Morton, D.C., Spoelstra, T.A.T., Blades, J.C.: Nova Aquilae 1982. Month. Not. R.A.S. 228, 329–376 (1987)

    ADS  Google Scholar 

  29. Starrfield, S.: in Classical novae, eds. M.F. Bode & A.M Evans, Wiley. Chichester p. 39–60 (1989)

    Google Scholar 

  30. Stickland, D.J., Penn, C.J., Seaton, M.J., Snijders, M.A.J., Storey, P.J.: Nova Cygni 1978. I — The nebular phase. Month. Not. R.A.S. 197, 107–138 (1981)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hernanz .

Editor information

Peter von Ballmoos

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Hernanz, M., José, J. (2006). Nucleosynthesis in nova explosions: Prospects for its observation with focusing telescopes. In: von Ballmoos, P. (eds) Focusing Telescopes in Nuclear Astrophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5304-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5304-7_7

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5303-0

  • Online ISBN: 978-1-4020-5304-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics