Skip to main content

Development of a new photon diffraction imaging system for diagnostic nuclear medicine

  • Chapter
Book cover Focusing Telescopes in Nuclear Astrophysics

Abstract

The objective of this project is to develop and construct an innovative imaging system for nuclear medicine and molecular imaging that uses photon diffraction and is capable of generating 1–2 mm spatial resolution images in two or three dimensions. The proposed imaging system would be capable of detecting radiopharmaceuticals that emit 100–200 keV gamma rays which are typically used in diagnostic nuclear medicine and in molecular imaging. The system is expected to be optimized for the 140.6 keV gamma ray from a Tc-99m source, which is frequently used in nuclear medicine. This new system will focus the incoming gamma rays in a manner analogous to a magnifying glass focusing sunlight into a small focal point on a detector’s sensitive area. Focusing gamma rays through photon diffraction has already been demonstrated with the construction of a diffraction lens telescope for astrophysics and a scaled-down lens for medical imaging, both developed at Argonne National Laboratory (ANL). In addition, spatial resolutions of 3 mm have been achieved with a prototype medical lens. The proposed imaging system would be comprised of an array of photon diffraction lenses tuned to diffract a specific gamma ray energy (within 100–200 keV) emitted by a common source. The properties of photon diffraction make it possible to diffract only one specific gamma ray energy at a time, which significantly reduces scattering background. The system should be sufficiently sensitive to the detection of small concentrations of radioactivity that can reveal potential tumor sites at their initial stages of development. Moreover, the system’s sensitivity would eliminate the need for re-injecting a patient with more radiopharmaceutical if this patient underwent a prior nuclear imaging scan. Detection of a tumor site at its inception could allow for an earlier initiation of treatment and wider treatment options, which can potentially improve the chances for cure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beutel, J., Kundel, H.L., Van Metter, R.L.: Handbook of medical imaging, Vol. 1, SPIE Press, Bellingham, Washington (2000)

    Google Scholar 

  2. Curry, T.S., Dowdey, J.E., Murry, R.C., Jr.: Physics of diagnostic Radiology, Fourth Edition, Lea and Febiger Press, Philadelphia (1990)

    Google Scholar 

  3. Hall, E.J.: Radiobiology for the Radiologist. Fifth Edition, Lippincott Williams and Wilkins Press, New York (2000)

    Google Scholar 

  4. Adler, L.P., Weinberg, I.N., Bradbury, M.S., Levine, E.A., Lesko, N.M., Geisinger, K.R., Berg, W.A., Freimanis, R.I.: Method for combined FDG-PET and radiographic imaging of primary breast cancers. The Breast Journal 9(3), 163 (2003)

    Article  Google Scholar 

  5. Carson, P.L., Giger, M., Welch, M.J., halpern, H., Kurdziel, K., Vannier, M., Evelhoch, J.L., Gazelle, G.S., Seltzer, S.E., Judy, P., Hendee, W.R., Bourland, J.D.: Biomedical imaging research opportunities workshop: report and recommendations. Radiology 229(2), 328 (2003)

    Article  Google Scholar 

  6. Chandra, R.: Introductory physics of nuclear medicine. Third Edition, Lea and Febinger Press, Philadelphia (1987)

    Google Scholar 

  7. Wagner, R.H., Karesh, S.M., Halama, R.: Questions and answers in nuclear medicine. Mosby Press, Chicago (1999)

    Google Scholar 

  8. Palmer, E.L., Scott, J.A., Strauss, H.W.: Practical nuclear medicine. W.B. Saunders Company, Philadelphia (1992)

    Google Scholar 

  9. Khalkhali, I., Maublant, J.C., Goldsmith, S.J.: Nuclear oncology — diagnosis and therapy. Lippincott Williams and Wilkins Press, New York (2001)

    Google Scholar 

  10. Khalkhali, I., Villanueva-Meyer, J., Edell, S.L., Hanelin, L.G., Lugo, C.E., Taillefer, R., Freeman, L.M., Neal, C.E., Scheff, A.M., Connolly, J.L., Schnitt, S.J., Baum, J. K., Houlihan, M.J., Hale, C.A., Haber, S. B.: Diagnostic accuracy of Tc-99m SESTAMIBI breast imaging in breast cancer detection. J. Nucl. Med. 37, 74P (1996)

    Google Scholar 

  11. Boerman, O.C., Dams, E.Th.M., Oyen, W.J.G., Corstens, F.H.M., Storm, G.: Radiopharmaceuticals for scintigraphic imaging of infection and inflammations. Inflamm. Res. 50, 55 (2001)

    Article  Google Scholar 

  12. Palmedo, H., Schomburg, A., Grunwald, F., Mallmann, P., Krebs, D., Biersack, H.: Technetium-99m-MIBI scintimammography for suspicious breast lesions. J. Nucl. Med. 37, 626 (1996)

    Google Scholar 

  13. Wagner, J.D., Schauwecker, D.S., Davidson, D., Wenck, S., Jung, S., Hutchins, G.: FDG-PET sensitivity for melanoma lymph node metastases is dependent on tumor volume. J. Surg. Onc. 77, 237 (2001)

    Article  Google Scholar 

  14. Abella, H.: PET fails to match sentinel node biopsy for melanoma staging. Diagnostic Imaging Online, URL: www.diagnosticimaging.com/dinews/2003060201.shtml (2003)

    Google Scholar 

  15. Smither, R.K., Fernandez, P.B., Graber, T., von Ballmoos, P., Naya, J., Albernhe, F., Vedrenne, G., Faiz, M.: Review of crystal diffraction and its application to focusing energetic gamma rays. Exp. Astronomy 6, 47 (1995)

    Article  ADS  Google Scholar 

  16. von Ballmoos, P., Smither, R.K., Naya, J.E., Albernhe, F., Faiz, M., Fernandez, P.B., Graber, T., Vendrenne, G.: A tunable crystal diffraction telescope for the energy range of nuclear transitions. Conf. Proc., Imaging in High Energy Astronomy, Anacapri, Italy (1994)

    Google Scholar 

  17. Kohnle, A.: A gamma-ray lens for nuclear astrophysics. Ph.D. Thesis, L’Universite Paul Sabatier, Toulouse, France (1998)

    Google Scholar 

  18. Smither, R.K., Roa, D.E.: Crystal diffraction lens for medical imaging. Proc. of SPIE: Medical Imaging 3977, 342 (2000)

    Article  ADS  Google Scholar 

  19. Roa, D.E., Smither, R.K.: Copper crystal lens for medical imaging: first results. Proc. of SPIE: Medical Imaging 4320, 435 (2001)

    Article  ADS  Google Scholar 

  20. Smither, R.K., Roa, D.E.: The physics of medical imaging with crystal diffraction lenses. Proc. of SPIE: Medical Imaging 4320, 447 (2001)

    Article  ADS  Google Scholar 

  21. Bragg, S.L.: The development of X-Ray analysis. In: Phillips, D.C., Lipson, H. (eds.), Dover Publications, New York (1992)

    Google Scholar 

  22. Blakemore, J.S.: Solid state physics. Second Edition, Cambridge University Press, New York (1985)

    Google Scholar 

  23. Ahscroft, N.W., Mermin, N.D.: Solid state physics. Saunders College Press, Philadelphia (1975)

    Google Scholar 

  24. Warren, B.E.: X-Ray Diffraction. Dover Publications, New York (1990)

    Google Scholar 

  25. Zachariasen, W.H.: Theory of X-Ray diffraction in crystals. Dover Publications, New York (1994)

    Google Scholar 

  26. Tipler, P.A.: Modern Physics. Worth Publishers, New York (1987)

    Google Scholar 

  27. X-5 Monte Carlo Team: MCNP — A general monte carlo n-particle transport code. Version 5, Los Alamos National Laboratory (2003)

    Google Scholar 

  28. Laboratoire d’Electronique de Technologie de l’Information, 17 rue des Martyrs<br/>38 054 Grenoble CEDEX 9, URL: www-leti.cea.fr/uk/index-uk.htm (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter von Ballmoos

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Roa, D.E. et al. (2006). Development of a new photon diffraction imaging system for diagnostic nuclear medicine. In: von Ballmoos, P. (eds) Focusing Telescopes in Nuclear Astrophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5304-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5304-7_24

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5303-0

  • Online ISBN: 978-1-4020-5304-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics