MOLECULAR METHODS FOR DETECTION AND QUANTITATION OF VIRUS IN APHIDS

  • Mariano Cambra
  • Edson Bertolini
  • Antonio Olmos
  • Nieves Capote
Part of the NATO Security through Science Series book series

Abstract

Following the introduction of a hitherto uncommon or wholly novel virus into a crop it is necessary to do three things: to identify the target, to manage spread, and (ideally) to eliminate sources of inoculum. Here, we have contrasted a number of approaches that have value for these purposes. In any geographic region (whether “developing” or “developed”) it is crucial to be prepared for the unexpected and to have developed a range of technologies that enable these objectives to be addressed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avinent, L., A. Hermoso de Mendoza, and G. Llácer, 1993. Comparison of sampling methods to evaluate aphid populations (Homoptera, Aphidinea) alighting on apricot trees, Agronomie, 13, 609–613.Google Scholar
  2. Bertolini, E., A. Olmos, M.C. Martínez, M.T. Gorris, and M. Cambra, 2001. Single-step multiplex RT-PCR for simultaneous and colorimetric detection of six RNA viruses in olive trees, J. Virol. Methods, 96, 33–41.PubMedCrossRefGoogle Scholar
  3. Cambra, M., M.T. Gorris, N. Capote, M. Asensio, M.C. Martínez, E. Bertolini, C. Collado, A. Hermoso de Mendoza, E. Mataix, and A. López, 2004. Epidemiology of Plum pox virus in Japanese plums in Spain, Acta Hort., 657, 195–200.Google Scholar
  4. Cambra, M., M.T. Gorris, C. Marroquín, M. Román, A. Olmos, M.C. Martínez, A. Hermoso de Mendoza, A. López, and L. Navarro, 2000. Incidence and epidemiology of Citrus tristeza virus in the Valencian Community of Spain, Virus Res., 71, 75–85.CrossRefGoogle Scholar
  5. Cambra, M., A. Hermoso de Mendoza, P. Moreno, and L. Navarro, 1981. Use of enzyme-linked immunosorbent assay (ELISA) for detection of citrus tristeza virus (CTV) in different aphid species, Proc. Int. Soc. Citricult., 1, 444–448.Google Scholar
  6. Clark, M.F., and A.M. Adams, 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses, J. Gen. Virol., 34, 475–483.PubMedGoogle Scholar
  7. Clarke, R.G., R.H. Converse, and M. Kojima, 1980. Enzyme-linked immunosorbent assay to detect potato leafroll virus in potato tubers and viruliferous aphids, Plant Dis., 64, 43–45.CrossRefGoogle Scholar
  8. Denèchère, M., F. Cante, and H. Lapierre, 1979. Détection immunoenzymatique du virus de la jaunisse nanisante de l’orge dans son vecteur Rhopalosiphum padi (L.), Ann. Phytopathol., 11, 507–514.Google Scholar
  9. Derron, J.O., and G. Goy, 1998. Aptitude de diferentes techniques de piégeage des pucerons vecteurs à prévoir les épidémies de jaunisse nanisante d l’orge (BYDV), Rev. Suisse Agric., 30, 125–129.Google Scholar
  10. Du Plessis, D.H., and M. Von Wechmar, 1981. Detection of cauliflower mosaic virus in leaf extracts, protoplasts and aphids by enzyme-linked immunosorbent assay (ELISA), Phytopath. Z., 100, 270–278.Google Scholar
  11. Fabre, F., C. Kervarrec, L. Mieuzet, G. Riault, A. Vialatte, and E. Jacquot, 2003. Improvement of Barley yellow dwarf virus—PAV detection in single aphids using a fluorescent real time RT-PCR, J. Virol. Methods, 110, 51–60.PubMedCrossRefGoogle Scholar
  12. Gera, A., G. Loebenstein, and B. Raccah, 1978. Detection of cucumber mosaic virus in viruliferous aphids by enzyme linked immunosorbent assay, Virology, 86, 542–545.PubMedCrossRefGoogle Scholar
  13. Hermoso de Mendoza, A., E. Péres, E.A. Carbonell, and V. Real, 1998. Sampling methods to establish percentages of species and population patterns in citrus aphids, in Aphids in Natural and Managed Ecosystems, edited by J.M. Nieto Nafría and A.F.G. Dixon, Universidad de León, León, pp. 561–568.Google Scholar
  14. Labone, G., G. Fauvel, F. Leclant, and J.B. Quiot, 1983. Intérêt des pièges à fils dans l’étude des populations de pucerons ailés, Agronomie, 3, 315–325.Google Scholar
  15. Marroquín, C., A. Olmos, M.T. Gorris, E. Bertolini, M.C. Martínez, E. Carbonell, A. Hermoso de Mendoza, and M. Cambra, 2004. Estimation of the number of aphids carrying Citrus tristeza virus that visit adult citrus trees, Virus Res., 100, 101–108.PubMedCrossRefGoogle Scholar
  16. McManus, P.S., and A.L. Jones, 1995. Detection of Erwinia amylovora by nested PCR and PCR-dot-blot and reverse-blot hybridization, Phytopathology, 85, 618–623.CrossRefGoogle Scholar
  17. Mehta, P., R.H. Brlansky, S. Gowda, and R.K. Yokomi, 1997. Reverse transcription polymerase chain reaction detection of Citrus tristeza virus in aphids, Plant Dis., 81, 1066–1069.Google Scholar
  18. Moericke, V., 1951. Eine Farbfalle zur Kontrolle des Fluges von Blattläusen insbesondere der Pfirsichblattlaus, Myzodes persicae (Sulz.), Nachrichtenbl. Deut. Pflanzenschutzd., 3, 23–24.Google Scholar
  19. Naidu, R.A., D.J. Robinson, and F.M. Kimmins, 1998. Detection of each of the causal agents of groundnut rosette disease in plants and vector aphids by RT-PCR, J. Virol. Methods, 76, 9–18.PubMedCrossRefGoogle Scholar
  20. Ng, J.C.K., and K.L. Perry, 2004. Transmission of plant viruses by aphid vectors, Mol. Plant Pathol., 5, 505–511.CrossRefPubMedGoogle Scholar
  21. Nie, X., and R.P. Singh, 2001. A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves, and tubers, J. Virol. Methods, 91, 37–49.PubMedCrossRefGoogle Scholar
  22. Nolasco, G., C. de Blas, V. Torres, and F. Ponz, 1993. A method combining immunocapture and PCR amplification in a microtiter plate for the routine diagnosis of plant viruses and subviral pathogens, J. Virol. Methods, 45, 201–218.PubMedCrossRefGoogle Scholar
  23. Olmos, A., E. Bertolini, M. Gil, and M. Cambra, 2004. Real-time RT-PCR for quantitative detection of Plum pox virus, Acta Hortic., 657, 149–153.Google Scholar
  24. Olmos, A., E. Bertolini, M. Gil, and M. Cambra, 2005. Real-time assay for quantitative detection of nonpersistently transmitted Plum pox virus RNA targets in single aphids, J. Virol. Methods, 128, 151–155.PubMedCrossRefGoogle Scholar
  25. Olmos, A., M. Cambra, M.A. Dasí, T. Candresse, O. Esteban, M.T. Gorris, and M. Asensio, 1997. Simultaneous detection and typing of plum pox potyvirus (PPV) isolates by heminested-PCR and PCR-ELISA, J. Virol. Methods, 68, 127–137.PubMedCrossRefGoogle Scholar
  26. Olmos, A., M. Cambra, O. Esteban, M.T. Gorris, and E. Terrada, 1999. New device and method for capture, reverse transcription and nested PCR in a single closed tube, Nucleic Acids Res., 27, 1564–1565.PubMedCrossRefGoogle Scholar
  27. Olmos, A., M.A. Dasi, T. Candresse, and M. Cambra, 1996. Print-capture PCR: a simple and highly sensitive method for the detection of plum pox virus (PPV) in plant tissues, Nucleic Acids Res., 24, 2192–2193.PubMedCrossRefGoogle Scholar
  28. Olmos, A., O. Esteban, E. Bertolini, and M. Cambra, 2003. Nested-PCR in a single closed tube, in Methods in Molecular Biology, Vol. 226: PCR Protocols: Methods and Applications, edited by J. Bartlett and D. Stirling, 2nd edition. Humana Press, Totowa, pp. 151–159, 545.Google Scholar
  29. Pirone, T.P., 1964. Discussion and preliminary reports. Aphid transmission of a purified Stylet-Borne virus acquired through a membrane, Virology, 23, 107–108.PubMedCrossRefGoogle Scholar
  30. Pirone, T.P., and K.F. Harris, 1977. Nonpersistent transmission of plant viruses by aphids, Annu. Rev. Phytopathol., 15, 55–73.CrossRefGoogle Scholar
  31. Plumb, R.T., 1990. The epidemiology of barley yellow dwarf in Europe, in Word Perspectives on Barley Yellow Dwarf, edited by P.A. Burnett, CIMMYT, México, pp. 215–227.Google Scholar
  32. Rasmussen, R., 2001. Quantitation on the LightCycler instrument, in Rapid Cycle Real-Time PCR: Methods and Applications, edited by S. Meuer, C. Wittwer, and K. Nakagawara, Springer, Heidelberg, pp. 21–34, 408.Google Scholar
  33. Schneider, W.L., D.J. Sherman, A.L. Stone, V.D. Damsteegt, and R.D. Frederick, 2004. Detection and quantitation of plum pox virus in aphid vectors by real-time fluorescent reverse transcription-PCR, Acta Hortic., 657, 135–139.Google Scholar
  34. Singh, R.P., 1998. Reverse-transcription polymerase chain reaction for the detection of viruses from plants and aphids, J. Virol. Methods, 74, 125–138.PubMedCrossRefGoogle Scholar
  35. Singh, R.P., 1999. A solvent-free, rapid and simple virus RNA-release method for potato leafroll virus detection in aphids and plants by reverse transcription polymerase chain reaction, J. Virol. Methods, 83, 27–33.PubMedCrossRefGoogle Scholar
  36. Singh, R.P., A.D. Dilworth, M. Singh, and D.L. McLaren, 2004. Evaluation of a simple membrane-based nucleic acid preparation protocol for RT-PCR detection of potato viruses from aphid and plant tissues, J. Virol. Methods, 121, 163–170.PubMedCrossRefGoogle Scholar
  37. Singh, R.P., J. Kurz, and G. Boiteau, 1996. Detection of stylet-borne and circulative potato viruses in aphids by duplex reverse transcription polymerase chain reaction, J. Virol. Methods, 59, 189–196.PubMedCrossRefGoogle Scholar
  38. Taylor, L.R., 1955. The standardization of air-flow in insect suction traps, with an appendix by W.S. Coleman, Ann. Appl. Biol., 43, 390–408.CrossRefGoogle Scholar
  39. Tichopad, A., M. Dilger, G. Schwarz, and M.W. Pfaffl, 2003. Standardized determination of real-time PCR efficiency from a single reaction set-up, Nucleic Acids Res., 31, e122.PubMedCrossRefGoogle Scholar
  40. Vercruysse, P., M. Gibbs, L. Tirry, and M. Höfte, 2000. RT-PCR using redundant primers to detect the three viruses associated with carrot motley dwarf disease, J. Virol. Methods, 88, 153–161.PubMedCrossRefGoogle Scholar
  41. Wetzel, T., T. Candresse, G. Macquaire, M. Ravelonandro, and J. Dunez, 1992. A highly sensitive immunocapture polymerase chain reaction method for plum pox potyvirus detection, J. Virol. Methods, 39, 27–37.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Mariano Cambra
  • Edson Bertolini
  • Antonio Olmos
  • Nieves Capote

There are no affiliations available

Personalised recommendations