Advertisement

CURRENT VIEWS ON HOST COMPONENTS INVOLVED IN PLANT VIRUS INTERCELLULAR TRAFFICKING

Conference paper
  • 693 Downloads
Part of the NATO Security through Science Series book series

Abstract

Plant virus diseases are one of the major threats to the world food supply and mitigation of crop losses caused by viral pathogens will be necessary if the stability and abundance of the food supply is to be sustained. In the 21st century, new threats of agroterrorism with the use of plant viruses as potential biological weapon are expected to boost existing problems and to demand improved remedies. In the past, disease due to viral pathogens was controlled using breeding to introduce natural resistance genes into crop plants or protective immunization (cross protection) when prior infection with one virus affords protection against closely related and more damaging ones (Pennazio et al., 2001; Campbell et al., 2002). Proven strategies for combating viruses include also chemicals to kill vectors or to stimulate systemic acquired resistance responses (Oostendorp et al., 2001; Campbell et al., 2002).

Keywords

Tobacco Mosaic Virus Plant Virus Movement Protein Tomato Spotted Wilt Virus Barley Yellow Dwarf Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, K., F. Kragler, B. Xoconostle-Cázares, and W.J. Lucas, 2002. A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata, Proc. Natl. Acad. Sci., USA, 99, 16342–16347.PubMedCrossRefGoogle Scholar
  2. Balachandran, S., Y. Xiang, C. Schobert, G.A. Thompson, and W.J. Lucas, 1997. Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata, Proc. Natl. Acad. Sci., USA, 94, 14150–14155.PubMedCrossRefGoogle Scholar
  3. Baulcombe, D., 2004. RNA silencing in plants, Nature, 431, 356–363.PubMedCrossRefGoogle Scholar
  4. Benvenuto, E. and P. Tavladoraki, 1995. Immunotherapy of plant viral diseases, Trends Microbiol., 7, 272–275.CrossRefGoogle Scholar
  5. Blackman, L.M. and R.L. Overall, 2001. Structure and function of plasmodesmata, Austr. J. Plant Physiol., 28, 709–727.Google Scholar
  6. Boevink, P. and K. Oparka, 2005. Virus-host interactions during movement process, Plant Physiol., 138, 4–6.CrossRefGoogle Scholar
  7. Boonrod, K., D. Galetzka, P.D. Nagy, U. Conrad, and G. Krczal, 2004. Single-chain antobodies against a plant viral RNA-dependent RNA polymerase confer virus resistance, Nat. Biotechnol., 22, 856–862.PubMedCrossRefGoogle Scholar
  8. Campbell, M.A., H.A. Fitzgerald, and P.C. Ronald, 2002. Engineering pathogen resistance in crop plants, Transgenic Res., 11, 599–613.PubMedCrossRefGoogle Scholar
  9. Carvalho, M.F. and S.G. Lazarowitz, 2004. Interaction of the movement protein NSP and the Arabidopsis acetyltransferase AtNSI is necessary for cabbage leaf curl geminivirus infection and pathogenicity, J. Virol., 78, 11161–11171.PubMedCrossRefGoogle Scholar
  10. Carvalho, M.F., R. Turgeon, and S.G. Lazarowitz, 2006. The geminivirus nuclear shuttle protein NSP inhibits the activity of AtNSI, a vascular-expressed Arabidopsis acetyltransferase regulated with the sink-to-source transition, Plant Physiol., 140, 1317–1330.PubMedCrossRefGoogle Scholar
  11. Chen, M.H., J. Sheng, J. Hind, A.K. Handa, and V. Citovsky, 2000. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterase is required for viral cell-to-cell movement, EMBO J., 19, 813–820.Google Scholar
  12. Chen, M.H., G.-W. Tian, Y. Gafni, and V. Citovsky, 2005. Effects of calreticulin on viral cell-to-cell movement, Plant Physiol., 138, 1866–1876.PubMedCrossRefGoogle Scholar
  13. Chen, M.H. and V. Citovsky, 2003. Systemic movement of a tobamovirus requires host cell pectin methylesterase, Plant J., 35, 386–392.PubMedCrossRefGoogle Scholar
  14. Conrad, U. and U. Fiedler, 1998. Compartment-specific accumulation of recombinant immunoglobulis in plant cells: an essential tool for antibody production and immuno- modulation of physiological functions and pathogen activity, Plant Mol. Biol., 38, 101–109.PubMedCrossRefGoogle Scholar
  15. Desvoyes, B., S. Faure-Rabasse, M.H. Chen, J.W. Park, and H.B. Scholthof, 2002. A novel plant homeodomain protein interacts in a functionally relevant manner with a virus movement protein, Plant Physiol., 129, 1521–1532.PubMedCrossRefGoogle Scholar
  16. Dorokhov, Y.L., K. Makinen, O.Y. Frolova, A. Merits, J. Saarinen, N. Kalkkinen, J.G. Atabekov, and M. Saarma, 1999. A novel function for a ubiquitous plant enzyme pectin methylesterase: The host-cell receptor for the tobacco mosaic virus movement protein, FEBS Lett., 461, 223–228.PubMedCrossRefGoogle Scholar
  17. Fitchen, J.M. and R.N. Beachy, 1993. Genetically engineered protection against viruses in transgenic plants, Ann. Rev. Microbiol., 47, 739–753.CrossRefGoogle Scholar
  18. Fontes, E.P.B., A.A. Santos, D.F. Luz, A.J. Waclawovsky, and J. Chory, 2004. The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity, Genes Develop., 18, 2545–2556.PubMedCrossRefGoogle Scholar
  19. Fridborg, I., J. Grainger, A. Page, M. Coleman, K. Findlay, and S. Angell, 2003. TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X., Mol. Plant Microbe Interact., 16, 132–140PubMedGoogle Scholar
  20. Gao, Z., E. Johansen, S. Eyers, C.L. Thumas, T.H.N. Ellis, and A.J. Maule, 2005. The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking, Plant J., 40, 376–385.CrossRefGoogle Scholar
  21. Gillespie, T., P. Boevink, S. Haupt, A.G. Roberts, R. Toth, T. Valentine, S. Chapman, and K.J. Oparka, 2002. Movement protein reveals that microtubules are dispensable for cell-to-cell movement of tobacco mosaic virus, Plant Cell, 14, 1207–1222.PubMedCrossRefGoogle Scholar
  22. Goldbach, R., E. Bucher, and M. Prins, 2003. Resistance mechanisms to plant viruses: An overview, Virus Res., 92, 207–212.PubMedCrossRefGoogle Scholar
  23. Gomez, G. and V. Pallas, 2001. Identification of a ribonucleoprotein complex between a viroid RNA and a phloem protein from cucumber, Mol. Plant Microbe Interact., 14, 910–913.PubMedGoogle Scholar
  24. Gómez, G. and V. Pallás, 2004. A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with hop stunt viroid RNA, J. Virol., 78, 10104–10110.PubMedCrossRefGoogle Scholar
  25. Gomez, G., H. Torres, and V. Pallas, 2005. Identification of a translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system, Plant J., 41, 319–331.CrossRefGoogle Scholar
  26. Haupt, S., G.H. Cowan, A. Ziegler, A.G. Roberts, K.J. Oparka, and L. Torrance, 2005. Two plant-viral movement proteins traffic in the endocytic recycling pathway, Plant Cell, 17, 164–181.PubMedCrossRefGoogle Scholar
  27. Haywood, V., F. Kragler, and W.J. Lucas, 2002. Plasmodesmata: Pathways for protein and ribonucleoprotein signaling, Plant Cell, 14, Suppl., S303–S325.PubMedGoogle Scholar
  28. Heinlein, M., 2002. The spread of tobacco mosaic virus infection: Insights into the cellular mechanism of RNA transport, Cell. Mol. Life Sci., 59, 58–82.PubMedCrossRefGoogle Scholar
  29. Heinlein, M. and B.L. Epel, 2004. Macromolecular transport and signalling through plasmodesmata, Int. Rev. Cytol., 235, 93–164.PubMedCrossRefGoogle Scholar
  30. Heinlein, M., H.S. Padgett, J.S. Gens, B.G. Pickard, S.J. Casper, B.L. Epel, and R.N. Beachy, 1998. Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection, Plant Cell, 10, 1107–1120.PubMedCrossRefGoogle Scholar
  31. Honda, A., H. Takahashi, T. Toguri, T. Ogawa, S. Hase, M. Ikegami, and Y. Ehara, 2003. Activation of defense-related gene expression and systemic acquired resistance in cucumber mosaic virus-infected tobacco plants expressing the mammalian 2’5’ oligoadenylate system, Arch. Virol., 148, 1017–1026.PubMedCrossRefGoogle Scholar
  32. Huang M., L. Jongejan, H. Zheng, L. Zhang, and J. Bol, 2001. Intracellular localization and movement phenotypes of alfalfa mosaic virus movement protein mutants, Mol. Plant-Microbe Interact., 14, 1063–1074.PubMedGoogle Scholar
  33. Johansen, L.K. and J.C. Carrington, 2001. Silencing on the spot. Induction and suppression of RNA silencing in the agrobacterium-mediated transient expression system, Plant Physiol., 126, 930–938.PubMedCrossRefGoogle Scholar
  34. Kawakami, S., Y. Watanabe, and R.N. Beachy, 2004. Tobacco mosaic virus infection spreads cell to cell as intact replication complex, Proc. Natl. Acad. Sci., USA, 101, 6291–6296.PubMedCrossRefGoogle Scholar
  35. Kim, S.H., E.V. Ryabov, J.W.S. Brown, and M. Taliansky, 2004. Involvement of the nucleolus in plant virus systemic infection, Bioch. Soc. Trans., 32, 557–560.CrossRefGoogle Scholar
  36. Kim, M.J., B.-K. Ham, H.R. Kim, I.-J. Lee, Y.J. Kim, K.H. Ryu, Y.I. Park, and K.-H. Paek, 2005. In vitro and in planta interaction evidence between Nicotiana tabacum thaumatin-like protein 1 (TLP1) and Cucumber mosaic virus proteins, Plant Mol Biol, 59, 981–994.PubMedCrossRefGoogle Scholar
  37. Kragler, F., M. Curin, K. Tritnyeva, A. Gansch, and E. Waigmann, 2003. MPB2C, a microtubule associated plant protein binds to and interferes with cell-to-cell transport of tobacco-mosaic-virus movement protein, Plant Physiol., 132, 1870–1883.PubMedCrossRefGoogle Scholar
  38. Laporte, C., G. Vetter, A.-M. Loudes, D.G. Robinson, S. Hillmer, C. Stussi-Garaud, and C. Ritzenthaler, 2003. Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of grapevine fanleaf virus movement protein in tobacco BY-2 cells, Plant Cell, 15, 2058–2075.PubMedCrossRefGoogle Scholar
  39. Lee, J.-Y., B.-C. Yoo, M.R. Rojas, N. Gomez-Ospina, L.A. Staehelin, and W.J. Lucas, 2003. Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1, Science, 299, 392–396.PubMedCrossRefGoogle Scholar
  40. Leonard, S., D. Plante, S. Wittmann, N. Daigneault, M.G. Fortin, and J.F. Laliberte, 2000. Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity, J. Virol., 74, 7730–7737.PubMedCrossRefGoogle Scholar
  41. Leonard, S., C. Viel, C. Beauchemin, N. Daigneault, M.G. Fortin, and J.F. Laliberte, 2004. Interaction of VPg-Pro of turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta, J. Gen. Virol., 85, 1055–1063.PubMedCrossRefGoogle Scholar
  42. Lin, B. and L. Heaton, 2001. An Arabidopsis thaliana protein interacts with a movement protein of turnip crinkle virus in yeast cells and in vitro, J. Gen. Virol., 82, 1245–1251.PubMedGoogle Scholar
  43. Liu, K., Z. Xia, Y. Zhang, Y. Wen, D. Wang, K. Brandenburg, F. Harris, and D.A. Phoenix, 2005. Interaction between the movement protein of barley yellow dwarf virus and the cell nuclear envelope: role of a putative amphiphilic alpha-helix at the N-terminus of the movement protein, Biopolymers, 79, 86–96.PubMedCrossRefGoogle Scholar
  44. Lucas, W.J., 2006. Plant viral movement proteins: Agents for cell-to-cell trafficking of viral genomes, Virology, 344, 169–184.PubMedCrossRefGoogle Scholar
  45. Lucas, W.J. and J.-W. Lee, 2004. Plasmodesmata as a supracellular control network in plants, Nat. Rev. Mol. Cell. Biol., 5, 712–726.PubMedCrossRefGoogle Scholar
  46. Maniataki, E., A.E. Martinez de Alba, R. Sagesser, M. Tabler, and M. Tsagris, 2003. Viroid RNA systemic spread may depend on the interaction of a 71-nucleotide bulged hairpin with host protein VirP1, RNA, 9, 346–354.PubMedCrossRefGoogle Scholar
  47. Matsushita, Y., M. Deguchi, M. Youda, M. Nishiguchi, and H. Nyunoya, 2001. The tomato mosaic tobamovirus movement protein interacts with a putative transcriptional coactivator KELP, Mol. Cells, 12, 57–66.PubMedGoogle Scholar
  48. Matsushita, Y., O. Miyakawa, M. Deguchi, M. Nishiguchi, and H. Nyunoya, 2002. Cloning of a tobacco cDNA coding for a putative transcriptional coactivator MBF1 that interacts with the tomato mosaic virus movement protein, J. Exp. Botany, 53, 1531–1532.CrossRefGoogle Scholar
  49. McLean, B.G., J. Zupan, and P. Zambryski, 1995. TMV P30 movement protein associates with the cytoskeleton in tobacco cells, Plant Cell, 7, 2101–2114.PubMedCrossRefGoogle Scholar
  50. McLean, B.G. and P. Zambryski, 2000. Interactions between viral movement proteins and the cytoskeleton, in Actin: A dynamic framework for multiple plant cell functions, edited by C.J. Staiger, F. Baluska, D. Volkmann, and P.W. Barlow, Kluwer Academic Publishers, Dordrecht.Google Scholar
  51. Miyoshi, H., N. Suehiro, K. Tomoo, S. Muto, T. Takahashi, T. Tsukamoto, T. Ohmori, and T. Natsuaki, 2006. Binding analyses for the interaction between plant virus genome-linked protein (VPg) and plant translational initiation factors, Biochimie, 88, 329–340.PubMedCrossRefGoogle Scholar
  52. Morozov, S.Yu. and A.G. Solovyev, 2003. Triple gene block: modular design of a multifunctional machine for plant virus movement, J. Gen. Virol., 84, 1351–1366.PubMedCrossRefGoogle Scholar
  53. Nelson, R.S. and V. Citovsky, 2005. Plant viruses. Invaders of cells and pirates of cellular pathways, Plant Physiol., 138, 1809–1814.PubMedCrossRefGoogle Scholar
  54. Neumann, U., F. Brandizzi, and C. Hawes, 2003. Protein transport in plant cells: In and out of the Golgi, Ann. Botany, 92, 167–180.CrossRefGoogle Scholar
  55. Oostendorp, M., W. Kunz, B. Dietrich, and T. Staub, 2001. Induced disease resistance in plants by chemicals, Eur. J. Plant Pathol., 107, 19–28.CrossRefGoogle Scholar
  56. Oparka, K.J., 2004. Getting the message across: How do plant cells exchange macromolecular complexes?, Trends Plant Sci., 9, 33–41.PubMedCrossRefGoogle Scholar
  57. Owens, R.A., M. Blackburn, and B. Ding, 2001. Possible involvement of a phloem lectin in long distance viroid movement, Mol. Plant Microbe Interact., 14, 905–909.PubMedGoogle Scholar
  58. Paape, M., A.G. Solovyev, T.N. Erokhina, E.A. Minina, M.V. Schepetilnikov, D.E. Lesemann, J. Schiemann, S.Yu. Morozov, and J.-W. Kellmann, 2006. At-4/1, an interactor of the Tomato spotted wilt virus movement protein, belongs to a new family of plant proteins capable of directed intra- and intercellular trafficking, Mol. Plant-Microbe Interact., 19, 874–883.PubMedGoogle Scholar
  59. Pennazio, S., P. Roggero, and M. Conti, 2001. A history of plant virology. Cross protection, New Microbiol., 24, 99–114.PubMedGoogle Scholar
  60. Pouwels, J., G. van der Krogt, J. van Lent, T. Bisseling, and J. Wellink, 2002. The cytoskeleton and the secretory pathway are not involved in targeting the cowpea mosaic virus movement protein to cell periphery, Virology, 297, 48–56.PubMedCrossRefGoogle Scholar
  61. Reichel, C. and R.N. Beachy, 1999. The role of the ER and cytoskeleton in plant viral trafficking, Trends Plant Sci., 4, 458–462.PubMedCrossRefGoogle Scholar
  62. Reichel, C. and R.N. Beachy, 2000. Degradation of tobacco mosaic virus movement protein by the 26S proteasome, J. Virol., 74, 3330–3337.PubMedCrossRefGoogle Scholar
  63. Roberts, A.G. and K.J. Oparka, 2003. Plasmodesmata and the control of symplastic transport, Plant, Cell Environ., 26, 103–124.CrossRefGoogle Scholar
  64. Ryabov, E.V., S.H. Kim, and M. Taliansky, 2004. Identification of a nuclear localization signal and nuclear export signal of the umbraviral long-distance RNA movement protein, J. Gen. Virol., 85, 1329–1333.PubMedCrossRefGoogle Scholar
  65. Sato, M., K. Nakahara, M. Yoshii, M. Ishikawa, and I. Uyeda, 2005. Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses, FEBS Lett., 579, 1167–1171.PubMedCrossRefGoogle Scholar
  66. Schillberg, S., S. Zimmermann, M.Y. Zhang, and R. Fischer, 2001. Antibody-based resistance to plant pathogens, Transgen. Res., 10, 1–12.CrossRefGoogle Scholar
  67. Scholthof, H.B., 2005. Plant virus transport: Motions of functional equivalence, Trends Plant Sci., 10, 376–382.PubMedCrossRefGoogle Scholar
  68. Seppanen, P., R. Puska, J. Honkanen, L.G. Tyulkina, O. Fedorkin, S.Yu. Morozov, and J.G. Atabekov, 1997. Movement protein-derived resistance to triple gene block-containing plant viruses, J. Gen. Virol., 78, 1241–1246.PubMedGoogle Scholar
  69. Shalitin, D. and S. Wolf, 2000. Interaction between phloem proteins and viral movement proteins, Aust. J. Plant Physiol., 27, 801–806.Google Scholar
  70. Soellick, T., J.F. Uhrig, G.L. Bucher, J.W. Kellmann, and P.H. Schreier, 2000. The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins, Proc. Natl. Acad. Sci., USA, 94, 14150–14155.Google Scholar
  71. Stoger, E., M. Sack, R. Fischer, and P. Christou, 2002. Plantibodies: Applications, advantages and bottlenecks, Curr. Opin. Biotechnol., 13, 161–166.PubMedCrossRefGoogle Scholar
  72. Torrance, L., I.A. Andreev, R. Gabrenaite-Verhovskaya, G. Cowan, and M.E. Taliansky, 2006. An unusual structure at one end of potato potyvirus particles, J. Mol. Biol., 357, 1–8.PubMedCrossRefGoogle Scholar
  73. Tremblay, D., A.A. Vaewhongs, K.A. Turner, T.L. Sit, and S.A. Lommel, 2005. Cell wall localization of red clover necrotic mosaic virus movement protein is required for cell-to-cell movement, Virology, 333, 10–21.PubMedCrossRefGoogle Scholar
  74. Trutnyeva, K., R. Bachmaier, and E. Waigmann, 2005. Mimicking carboxyterminal phosphorylation differently effects subcellular distribution and cell-to-cell movement of tobacco mosaic virus movement protein, Virology, 332, 563–577.PubMedCrossRefGoogle Scholar
  75. Truve, E., M. Kelve, A. Aaspollu, A. Kuuksalu, P. Seppanen, and M. Saarma, 1994. Principles and background for the construction of transgenic plants displaying multiple virus resistance, Arch. Virol., 9, Suppl., 41–50.Google Scholar
  76. Tzfira, T., Y. Rhee, M.H. Chen, T. Kunik, and V. Citovsky, 2000. Nucleic acid transport in plant-microbe interactions: The molecules that walk through the walls, Ann. Rev. Microbiol., 54, 187–219.CrossRefGoogle Scholar
  77. Vanitharani, R., P. Chellappan, and C.M. Fauquet, 2005. Geminiviruses and RNA silencing, Trends Plant Sci., 10, 144–161.PubMedGoogle Scholar
  78. van Vliet, C., E.C. Thomas, A. Merino-Trigo, R.D. Teasdale, and P.A. Gleeson, 2003. Intracellular sorting and transport of proteins, Progress Biophys. Mol. Biol., 83, 1–45.CrossRefGoogle Scholar
  79. Von Bargen, S., K. Salchert, M. Paape, B. Piechulla, and J. Kellmann, 2001. Interaction between the tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesis, and DnaJ-like chaperons, Plant Physiol. Biochem., 39, 1083–1093.CrossRefGoogle Scholar
  80. Waigmann, E., S. Ueki, K. Trutnyeva, and V. Citovsky, 2004. The Ins and Outs of nondestructive cell-to-cell and systemic movement of plant viruses, Crit. Rev. Plant Sci., 23, 195–250.CrossRefGoogle Scholar
  81. Wilson, T.M.A., 1993. Strategies to protect crop plants against viruses: Pathogen-derived resistance blossoms, Proc. Natl. Acad. Sci., USA, 90, 16342–16347.Google Scholar
  82. Wittmann, S., H. Chatel, M.G. Fortin, and J.-F. Laliberte, 1997. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso)4E of Arabidopsis thaliana using the yeast two-hybrid system, Virology, 234, 84–92.PubMedCrossRefGoogle Scholar
  83. Yoshioka, K., Y. Matsushita, M. Kasahara, K.-I. Konagaya, and H. Nyunoya, 2004. Interaction of tomato mosaic virus movement protein with tobacco RIO kinase, Mol. Cells, 17, 223–229.PubMedGoogle Scholar
  84. Zamyatnin, A.A., Jr., A.G. Solovyev, P.V. Bozhkov, J.P.T. Valkonen, S.Yu. Morozov, and E.I. Savenkov, 2006. Assessment of the integral membrane protein topology in living cells, Plant J., 46, 145–154.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

There are no affiliations available

Personalised recommendations