THE KINETICS OF RADIATION-INDUCED POINT DEFECT AGGREGATION AND METALLIC COLLOID FORMATION IN IONIC SOLIDS

  • Eugene A. Kotomina
  • Anatoly I. Popov
Conference paper
Part of the NATO Science Series book series (NAII, volume 235)

Abstract

By definition, a metallic colloid is “a particle, which size is sufficiently small that there is at least a possibility that its properties will differ from those of the bulk material” [1]. The existence of metallic colloids in ionic crystals has been known for a long time [2-6]. Metallic colloids can be produced in ionic solids by a number of methods. 1) Additive coloration (thermochemical reduction), where a crystal is heated in the metal vapour at high temperature, so that the excess metal is introduced into the crystal. 2) Electrolytic coloration is carried out by applying an electric field (~100V/cm) at elevated temperatures. 3) Ionizing radiation, where conditions of colloid formation depend on both type of radiation and material. 4) Ion implantation.

Keywords

Lithium Recombination Fluoride Hydride Fluorine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. [1]
    A. E. Hughes, Radiation Effects, 74, 57 (1983).CrossRefGoogle Scholar
  2. [2]
    F. Seitz, Rev. Mod. Phys. 26, 7 (1954).CrossRefADSGoogle Scholar
  3. [3]
    J. H. Schulman and W. D. Compton, Color Centers in Solids, Pergamon Press, Oxford, 1962.Google Scholar
  4. [4]
    A.E. Hughes and S.C. Jain, Adv. Phys. 28, 717 (1979).CrossRefADSGoogle Scholar
  5. [5]
    C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, New York, 1983.)Google Scholar
  6. [6]
    K.K. Schwartz and Yu. Ekmanis, Dielectric Materials: Radiation-induced Processes and Stability, Zinatne, Riga, 1989 (in Russian).Google Scholar
  7. [7]
    L.H. Abu-Hassan, P.D. Townsend, R.A. Wood, Nucl Instr Meth. B 32, 225 (1988); J. Nahum and D. A. Wiegand, Phys. Rev. 154, 817 (1967); J. Nahum, Phys. Rev. 174, 1000–1003 (1968); R. M. Macfarlane, A. Z. Genack and R. G. Brewer, Phys.Rev. B 17, 2821 (1978).CrossRefADSGoogle Scholar
  8. [8]
    V.V.Ter-Mikirtychev and T.Tsuboi, Progr. Quant. Electr. 20, 219 (1996).CrossRefGoogle Scholar
  9. [9]
    G.O Amolo, J.D. Comins, A.T. Davidson, Nucl Instr Meth B 218, 244 (2004).CrossRefADSGoogle Scholar
  10. [10]
    W. Hayes, Crystals with Fluorite Structure, Oxford, 1974.Google Scholar
  11. [11]
    W.B. Fowler, Physics of Color Centers, Academic Press, 1968.Google Scholar
  12. [12]
    M. Lambert, A. Guinier, C. R. Hebd, Seances Acad. Sci. 246, 1678 (1958).Google Scholar
  13. [13]
    P. J. Ring, J. G. O’Keefe, and P. J. Bray, Phys. Rev. Lett. 1, 453 (1958).CrossRefADSGoogle Scholar
  14. [14]
    Y. W. Kim, R. Kaplan, and P. J. Bray, Phys. Rev. 117, 740 (1960).CrossRefADSGoogle Scholar
  15. [15]
    Ch. Ryter, Phys. Rev. Lett. 5, 10 (1960).CrossRefADSGoogle Scholar
  16. [16]
    M. Lambert, Ch. Mazieres, and A. Guinier, J. Phys. Chem. Solids 18, 129 (1961)CrossRefGoogle Scholar
  17. [17]
    A. Van den Bosch. J. Phys. Chem. Solids 25, 1293 (1964)CrossRefGoogle Scholar
  18. [18]
    A. Van den Bosch. Radiat. Eff. 19, 129 (1973)MathSciNetCrossRefGoogle Scholar
  19. [19]
    C. Taupin, J. Phys. Chem. Solids 28, 41 (1967).CrossRefGoogle Scholar
  20. [20]
    S.G. L’vov, F.G. Cherkasov, A.Ya. Vitol and V.A. Silaev, Appl. Radiat. Isotopes 47, 1615 (1996).CrossRefGoogle Scholar
  21. [21]
    A. T. Davidson, J. D. Comins, T. E. Derry, and F. S. Khumalo, Rad. Eff. 98, 305 (1986).CrossRefGoogle Scholar
  22. [22]
    N. Seifert, S. Vijayalakshmi, Q. Yan, J. L. Allen, A. V. Barnes, R. G. Albridge, and N. H. Tolk, Phys. Rev. B 51, 16403 (1995).CrossRefADSGoogle Scholar
  23. [23]
    Yu. I. Didchik, A.P. Shkandarevich, Yu.A. Ekmanis, Sov. Optics Spectr. 65, 551 (1989).ADSGoogle Scholar
  24. [24]
    A.T. Davidson, J.D. Comins, A.M. Raphuthi, A.G. Kozakiewicz, E.J. Sendezera, T.E. Derry, J. Phys.: Cond. Matter 7, 3211 (1995).CrossRefADSGoogle Scholar
  25. [25]
    N. Seifert, S. Vijayakshmi, Q. Yan, A. Barnes, R. Albridge, H. Ye, N. Tolk, W. Husinski, Rad. Eff. & Def. Solids, 128, 15 (1994).CrossRefGoogle Scholar
  26. [26]
    K. Schwartz, G. Wirth, C. Trautmann, T. Steckenreiter, Phys Rev B 56, 10711 (1997).CrossRefADSGoogle Scholar
  27. [27]
    C. Trautmann, K. Schwartz, O. Geiss, J. Appl. Phys. 83, 3560 (1998); C. Trautmann, K. Schwartz, and T. Steckenreiter, Nucl. Instr. Meth., B 156, 162 (1999)CrossRefADSGoogle Scholar
  28. [28]
    F. Sagastibelza, J.L. Alvarez Rivas, J. Phys.C: Sol. St. Phys. 14, 1873 (1981).CrossRefADSGoogle Scholar
  29. [29]
    T.A. Green, G.M. Loubriel, P.M. Richards, N.H. Tolk, R.F. Haglund, Phys. Rev. B 35, 781 (1987).CrossRefADSGoogle Scholar
  30. [30]
    N. Bouchaala, E.A. Kotomin, V.N. Kuzovkov, M. Reichling, Sol. St. Comm., 108, 629 (1998)CrossRefGoogle Scholar
  31. [31]
    G. Mie, Ann. der Physik 25, 377 (1908).CrossRefADSGoogle Scholar
  32. [32]
    M. Lambert, Ch. Mazieres, A. Guinier, J. Phys. Chem. Sol. 18, 129 (1961).CrossRefGoogle Scholar
  33. [33]
    S. Bronshteyn and A Protsenko, Rad. Eng. Electr. Phys. 15, 677 (1970).Google Scholar
  34. [34]
    M. Huisinga, N. Bouchaala, R. Bennewitz, E.A. Kotomin, M. Reichling, V.N. Kuzovkov, W. von Niessen, Nucl. Inst. Meth., B 141, 79 (1998).CrossRefADSGoogle Scholar
  35. [35]
    M. Savostianova, Z.Phys. 64, 262 (1930).CrossRefADSGoogle Scholar
  36. [36]
    U. Jain and A.B. Lidiard, Phil. Mag., 35, 245 (1977).CrossRefGoogle Scholar
  37. [37]
    A.E.Hughes and B. Henderson, in: Point Defects in Solids (ed. J.H. Crawford and L.M.Slifkin), Plenum Press, London, New York, 1072.Google Scholar
  38. [38]
    A.E. Hughes and S.C. Jain, Adv. Phys. 28, 717 (1979).CrossRefADSGoogle Scholar
  39. [39]
    V.I. Dubinko, A.A. Turkin, D.I. Vainstein, H.W. den Hartog, J. Nucl. Mater. 304, 117 (2002).CrossRefADSGoogle Scholar
  40. [40]
    F.G. Cherkasov, S.G. L’vov, D.A. Tikhonov, H.W. den Hartog and D.I. Vainshtein. J. Phys.: Condens. Matter 14, 7311 (2002).CrossRefADSGoogle Scholar
  41. [41]
    H.W. den Hartog, D.I. Vainshtein, V.I. Dubinko, A.A. Turkin, V.V. Gann, J. Jacobs, Radiation Damage in NaCl:retrievability, smart backfill materials, monitoring CORA Research Projectfor Dutch Ministry of Economic Affairs Final Report, 1999.Google Scholar
  42. [42]
    H.W. den Hartog, J.C. Groote, and J.R. Weerkamp, Rad. Eff and Def. Solids, 139 (1996) 1; H.W. den Hartog, Rad. Eff and Def. in Solids, 150, 167 (1999).CrossRefGoogle Scholar
  43. [43]
    S. D. McLaughlan and H W Evans, Phys. Stat. Sol. 27, 695 (1968).CrossRefGoogle Scholar
  44. [44]
    R. Alcala and V. Orera, J. de Physique C7 520 (1976).Google Scholar
  45. [45]
    E. Johnson and L.T.Chadderton, Rad. Effects 79, 183 (1983).CrossRefGoogle Scholar
  46. K. Noda, K. Uchida, T. Tanifuji and S. Nasu, Phys. Rev.B 24, 3736 (1981) K. Noda, Y. Ishii, H. Matsui and H. Watanabe, Radiat. Eff. 97, 297 (1986).Google Scholar
  47. [47]
    P. Vajda and F. Beuneu, Phys. Rev. B 53, 5335 (1996).CrossRefADSGoogle Scholar
  48. [48]
    F. Beuneu and P. Vajda, Phys. Rev. Lett. 76, 4544 (1996).PubMedCrossRefADSGoogle Scholar
  49. [49]
    F. Beuneu, P. Vajda, G. Jaskierowicz and M. Lafleurielle, Phys. Rev. B 55, 11263 (1997).CrossRefADSGoogle Scholar
  50. [50]
    G. Krexner, M. Prem, F. Beuneu and P. Vajda, Phys. Rev. Lett. 91, 135502 (2003)PubMedCrossRefADSGoogle Scholar
  51. [51]
    P. Vajda, F. Beuneu, G. Krexner, M. Prem, O. Blaschko and C. Maier. Nucl. Instr. Meth., B 166/167, 275 (2000)CrossRefADSGoogle Scholar
  52. [52]
    T. Shikama and G. P. Pells, Philos. Mag. A 47, 369 (1983).CrossRefGoogle Scholar
  53. [53]
    G. P. Pells, Rad. Eff. 64, 71 (1982).CrossRefGoogle Scholar
  54. [54]
    M. H. Auvray-Gely, A. Dunlop, and L. W. Hobbs, J. Nucl. Mater., 133/134, 230 (1985).CrossRefGoogle Scholar
  55. [55]
    M. H. Auvray-Gely, A. Perez, and A. Dunlop, Philos. Mag. B 57 137 (1988).CrossRefGoogle Scholar
  56. [56]
    M.A. Monge, A.I. Popov, C. Ballesteros, R. González, Y. Chen, and E.A. Kotomin, Phys. Rev. B 62, 9299 (2000).CrossRefADSGoogle Scholar
  57. [57]
    A.I. Popov, M.A. Monge, R. González, Y. Chen, and E.A. Kotomin, Solid State Comm. 118, 163 (2001).CrossRefGoogle Scholar
  58. [58]
    F. E. Pretzel, D. T. Vier, E. G. Szklarz, and W. B. Lewis, Los Alamos Scientific Laboratory Report No. LA-2463, 1961.Google Scholar
  59. [59]
    A. Berthault, S. Bedere, and J. Matricon, J. Phys. Chem. Solids 38, 913 (1977).CrossRefGoogle Scholar
  60. [60]
    C. Vigreux, P. Loiseau, L. Binet, and D. Gourier, Phys. Rev B 61, 8759 (2000).CrossRefADSGoogle Scholar
  61. [61]
    O. Zogal, P. Vajda, F. Beuneu and A. Pietraszko, Eur. Phys. Journal B2, 451 (1998).ADSGoogle Scholar
  62. [62]
    V.N. Kuzovkov and E.A. Kotomin, Rept. Progr. Phys., 51, 1479 (1988).CrossRefADSGoogle Scholar
  63. [63]
    E.A. Kotomin and V.N. Kuzovkov, Rept. Progr. Phys., 55, 2079 (1992).CrossRefADSGoogle Scholar
  64. [64]
    E.A. Kotomin and V.N. Kuzovkov, Modern Aspects of Diffusion-Controlled Reactions, vol. 34 in a series Comprehensive Chemical Kinetics, (Elsevier, Amsterdam, 1996).Google Scholar
  65. [65]
    S.J. Zinkle, Rad. Eff and Def. in Solids, 148, 447 (1999).CrossRefGoogle Scholar
  66. [66]
    J.R.W. Weerkamp, J.C. Groote, J. Seinen and H.W. den Hartog, Phys.Rev. B50, 9781 (1994)ADSGoogle Scholar
  67. [67]
    V.I. Dubinko, A.A Turkin, D.I. Vainshtein, H.W. den Hartog, Rad. Eff and Def. in Solids, 150, 145; 173 (1999).CrossRefGoogle Scholar
  68. [68]
    G. Martin, Phil. Mag., 32, 615 (1990).CrossRefGoogle Scholar
  69. [69]
    E.A. Kotomin, M. Zaiser, W.J. Soppe, Phil. Mag., A 70, 313 (1994).CrossRefGoogle Scholar
  70. [70]
    J.A. D. Wattis, and P. V. Coveney, Phys Chem Chem Phys., 1, 2163 (1999).CrossRefGoogle Scholar
  71. [71]
    V.N. Kuzovkov, E.A. Kotomin, W. von Niessen, Phys. Rev. B 58, 8454 (1998)CrossRefADSGoogle Scholar
  72. [72]
    E.A. Kotomin, V.N. Kuzovkov, M. Zaiser, and W.J. Soppe, Rad. Eff and Def. in Solids, 136, 209 (1995).CrossRefGoogle Scholar
  73. [73]
    E.A. Kotomin, V.N. Kuzovkov, Phys. Scripta, 50, 720 (1994).CrossRefADSGoogle Scholar
  74. [74]
    N. Itoh and K. Tanimura, J. Phys. Chem. Sol., 51, 717 (1990).CrossRefGoogle Scholar
  75. [75]
    K. Atobe, J. Chem. Phys. 71, 2588 (1979).CrossRefADSGoogle Scholar
  76. [76]
    K. Bachmann and H. Peisl, J. Phys. Chem. Sol. 31, 1525 (1970).CrossRefGoogle Scholar
  77. [77]
    V.M. Lisitsyn and V.Yu. Yakovlev, Rus. Phys. Journal, 23, No 3, 110 (1980).Google Scholar
  78. [78]
    K.A. Kalder and A.F. Malysheva, Sov. Optics Spectr., 31, 252 (1971).Google Scholar
  79. [79]
    R.T. Williams, M.N. Kabler, W. Hayes, and J.P. Stoll, Phys. Rev. B14, 725 (1976).ADSGoogle Scholar
  80. [80]
    A.I. Popov, E.A. Kotomin, M.M. Kukla, Phys. Stat. Sol., 195, 61 (1996).CrossRefGoogle Scholar
  81. [81]
    E.A. Kotomin and E.A. Popov, Nucl. Inst. Meth., B 141, 1 (1998).CrossRefADSGoogle Scholar
  82. [82]
    J. Mai, V.N. Kuzovkov, W. von Niessen, J. Phys A 29, 6205, 6219 (1996).MATHCrossRefADSGoogle Scholar
  83. [83]
    V.N. Kuzovkov, A.I. Popov, E.A. Kotomin, M.A. Monge, R. Gonzalez, and Y. Chen, Phys. Rev. B 64, 064102 (2001).CrossRefADSGoogle Scholar
  84. [84]
    R.L. Fleischer, Nuclear Tracks in Science and Technology, in: Tracks to Innovation, Springer, Berlin, 1998.Google Scholar
  85. [85]
    C. Trautmann, M. Toulemonde, K. Schwartz, J. M. Costantini, and A. Müller, Nucl. Instr. Meth. B 164, 365 (2000).CrossRefADSGoogle Scholar
  86. [86]
    A.I. Popov and E. Balanzat, Nucl.Instr.Meth. B 166–167, 545 (2000). G.Szenes, F.Pászti, Á. Péter and A.I.Popov, Nucl.Instr.Meth. B 166–167, 949 (2000). K.Kimura, S. Sharma and A.I.Popov, Nucl.Instr.Meth. B 191, 48 (2002).CrossRefGoogle Scholar
  87. [87]
    K. Schwartz, C. Trautmann, T. Steckenreiter, O. Geiss, and M. Krämer, Phys. Rev. B 58, 11232 (1998).CrossRefADSGoogle Scholar
  88. [88]
    C. Trautmann, K. Schwartz, J. M. Costantini, T. Steckenreiter, and M. Toulemonde, Nucl. Instr. Meth. B 146, 367 (1998).CrossRefADSGoogle Scholar
  89. [89]
    N. Itoh and K. Tanimura, J. Phys. Chem. Solids 51, 717 (1990).CrossRefGoogle Scholar
  90. [90]
    Ch. B. Lushchik, Creation of Frenkel pairs by exciton decay in alkali halides, in: Physics of Radiation Damage, Elsevier, Amsterdam, 1986, pp. 473–525.Google Scholar
  91. [91]
    F. Agullo-Lopez, C. R. A. Catlow, and P. Townsend, “Point defects in materials,” Academic Press, London, 1988.Google Scholar
  92. [92]
    N. Itoh and A. M. Stoneham, Materials Modification by Electronic Excitation, Cambridge University Press, Cambridge, 2000.CrossRefGoogle Scholar
  93. [93]
    M. Toulemonde, Ch. Dufor, A. Meftah, and E. Paumier, Nucl. Instr. Meth. B 166–167, 903 (2000).CrossRefGoogle Scholar
  94. [94]
    E.A. Kotomin, V. Kashcheyevs, V.N. Kuzovkov, K. Schwartz, and C. Trautmann, Phys. Rev. B 64, 144108 (2001).CrossRefADSGoogle Scholar
  95. [95]
    D. A. Young, Nature 182, 375 (1958).PubMedCrossRefADSGoogle Scholar
  96. [96]
    R. Katz, K. S. Loh, L. Daling, and G. R. Huang, Rad. Eff. Def. Sol. 114, 15 (1990).CrossRefGoogle Scholar
  97. [97]
    A. Rascón, J. L. Alvarez Rivas, J. Phys. C: Solid State Phys. 16 (1983) 241.CrossRefADSGoogle Scholar
  98. [98]
    O. Salminen, P. Riihola, A. Ozols, and T. Viitala, Phys. Rev. B 53, 6129 (1996).CrossRefADSGoogle Scholar
  99. [99]
    A. T. Davidson, J. D. Comins, and T. E. Derry, Rad. Eff. Def. Sol. 90, 213 (1985).CrossRefGoogle Scholar
  100. [100]
    G. Wirth, K. Schwartz, and C. Trautmann, private communication.Google Scholar
  101. [101]
    G. Kizane, J. Tiliks, A. Vitin, and J. Rudzitis, J. Nucl. Mater. 329–333, 1287 (2004).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Eugene A. Kotomina
    • 1
  • Anatoly I. Popov
    • 2
  1. 1.European Commission, Joint Research CenterInstitute for Transuranium ElementsKarlsruheGermany
  2. 2.University of LatviaRigaLatvia

Personalised recommendations