Skip to main content

AMORPHOUS SYSTEMS AND AMORPHIZATION

  • Conference paper
Book cover Radiation Effects in Solids

Part of the book series: NATO Science Series ((NAII,volume 235))

Abstract

Since ion irradiation can lead to high densities of displaced atoms in solids, one is led to the conjecture that it may possibly amorphize an initially crystalline lattice. Under what conditions can this occur? What relation does ion-induced amorphization bear to the near-equilibrium thermodynamic conditions for obtaining those specific metastable solid solutions that qualify as “glasses”? This chapter approaches the second question first, deliberately putting ion irradiation effects in the perspective of materials science, rather than the reverse. In that sense, it is rather complementary to the presentation given in Chapter 10 (Ossi). I first recall some background information and references on the main features of the amorphous state. I then discuss amorphization dynamics – with and without irradiation – emphasizing those properties, which are specifically obtained under irradiation. The following aspects have guided my presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. R. Zallen, The Physics of Amorphous Solids (John Wiley, New York, 1983).

    Book  Google Scholar 

  2. see “Frontiers in Materials Science”, Science 267, 1924–1953 (1995).

    Google Scholar 

  3. D.E. Porter and K.E. Easterling, Phase Transformation in Metals and Alloys (Van Nostrand Reinhold, Wokingham, England, 1981).

    Google Scholar 

  4. U. Mizutani and T.B. Massalski, Proc. AIME Symposium on Alloying Properties of Noble Metals, ed. by T.B. Massalski, L. H. Bennett, W. B. Pearson and Y. A. Chang (AIME, Warrendale, PA., 1986).

    Google Scholar 

  5. J. H. Perepezko, Progr. Mater. Sci., 49, 263 (2004).

    Article  CAS  Google Scholar 

  6. L. Landau and I. M. Lifschitz, Statistical physics, Addison-Wesley (1958).

    Google Scholar 

  7. J. Jäckle, Rep. Prog. Phys. 49, 172 (1986).

    Article  Google Scholar 

  8. R. G. Palmer, Adv. Phys. 31, 669 (1982).

    Article  ADS  Google Scholar 

  9. N. E. Cusack, The Physics of Structurally Disordered Matter (Adam Hilger, Bristol, 1988).

    Google Scholar 

  10. Glassy Metals, Magnetic, Chemical and Structural Properties, ed. R. Hasegawa (CRC Press, Boca Raton, 1983). See article by D. Boudreaux.

    Google Scholar 

  11. Ju-Yin Cheng et al., J. Appl. Phys., 95, 7779 (2004) and refs. therein.

    Article  ADS  CAS  Google Scholar 

  12. G. T. Barkema and N. Mousseau, Phys. Rev. B62, 4985 (2000).

    ADS  Google Scholar 

  13. W. L. Johnson and M. Tenhover, in Ref. 10.

    Google Scholar 

  14. H. Bernas, in “Materials Modification by Ion Beams”, ed. R. Kelly and M. F. Da Silva, NATO ASI Series E, (Kluwer Academic, 1989).

    Google Scholar 

  15. Y. Adda, M. Beyeler and G. Brebec, Thin Solid Films 25, 107 (1975).

    Article  CAS  Google Scholar 

  16. G. Martin and P. Bellon, Sol. State Phys. 50, 189 (1997) and refs. therein.

    Article  CAS  Google Scholar 

  17. J. W. Cahn & J. E. Hilliard, J. Chem. Phys. 28, 258 (1958); 30, 1121 (1959); and 31, 688 (1959); and J. W. Cahn and J. E. Hilliard, Acta Metall. 19, 151 (1971).

    Article  CAS  Google Scholar 

  18. G. Martin, Phys. Rev. B30, 1424 (1984).

    ADS  Google Scholar 

  19. J. W. Cahn, Acta Met. 9, 7 (1961).

    Google Scholar 

  20. M. Strobel, K. H. Heinig and W. Möller, Phys. Rev. B64, 24 5422 (2001), V. Borodin, K. H. Heinig and S. Reiss, Phys. Rev. B56, 5332 (1997).

    Google Scholar 

  21. C. Massobrio et al., Phys. Rev. B41, 10486 (1990).

    ADS  Google Scholar 

  22. M. J. Sabochick and Nghi Q. Lam, Phys. Rev. B43, 5243 (1991).

    ADS  Google Scholar 

  23. R. S. Averback and T. D. de la Rubia, Solid State Phys. 51, 281 (1998) and refs. therein.

    Article  CAS  Google Scholar 

  24. F. F. Morehead & B. L. Crowder, Rad. Eff. Def. Sol. 6, 27 (1970); J. F. Gibbons, Proc. IEEE 60, 1062 (1972).

    Article  Google Scholar 

  25. J. Yamasaki, S. Takeda and K. Tsuda, Phys. Rev. B65, 115213 (2002).

    ADS  Google Scholar 

  26. F. L. Vook & H. J. Stein, Radiat. Eff. 2, 23 (1969); M. L. Swanson et al., Radiat. Eff. 9, 249 (1971).

    Article  CAS  Google Scholar 

  27. Lourdes Pelaz et al., Nucl. Inst. Meth. Phys. Res. B216, 41 (2004) and refs. therein.

    Google Scholar 

  28. M. O. Ruault, J. Chaumont and H. Bernas, Nucl. Inst. Methods 209/210, 351 (1983) and H. Bernas, M.O. Ruault, and P. Zheng, p.459, Crucial Issues in Semiconductor Materials & Processing Technologies (Kluwer Academic, N.Y., 1992).

    Article  Google Scholar 

  29. Laurent J. Lewis and Risto M. Nieminen, Phys. Rev. B54, 1459 (1996).

    ADS  Google Scholar 

  30. M. Avrami, J. Chem. Phys. 7, 1103 (1937); 8, 212 (1940); 9, 177 (1941).

    Article  Google Scholar 

  31. S. U. Campisano et al., Nucl. Inst. Methods B80/81, 514 (1993).

    ADS  Google Scholar 

  32. H. Bernas et al., Phys. Rev. Lett. 91, 077203 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  33. B.X. Liu, W. S. Lai and Z. J. Zhang, Adv. Phys. 50, 367 (2001).

    Article  ADS  CAS  Google Scholar 

  34. S. Watanabe et al., Phil. Mag. 83, 2599 (2003).

    Article  CAS  Google Scholar 

  35. C. Cohen et al., Phys. Rev. B31, 5 (1985).

    ADS  Google Scholar 

  36. M. Schack, PhD. Thesis, University of Paris XI (1984).

    Google Scholar 

  37. A. Traverse et al., Phys. Rev. B37, 2495 (1988).

    ADS  Google Scholar 

  38. see lectures by J. Joffrin and P. W. Anderson in Ill-condensed Matter, ed. R. Balian, R. Maynard, G. Toulouse (North Holland, 1979).

    Google Scholar 

  39. M. L. Cohen and G. S. Grest, Phys. Rev. B20, 1077 (1979) and G. S. Grest and M. L. Cohen, Adv. Chem. 48, 455 (1981).

    ADS  Google Scholar 

  40. H. W. Sheng et al., Nature 439, 419 (2006)

    Article  PubMed  ADS  CAS  Google Scholar 

  41. L. E. Rehn et al., Phys. Rev. Lett. 59, 2987 (1987).

    Article  PubMed  ADS  CAS  Google Scholar 

  42. M. O. Ruault et al., Phil. Mag. A58, 397 (1988).

    Google Scholar 

  43. Yufeng Shi and Michael L. Falk, Phys. Rev. Lett. 95, 095502 (2005); M. L. Falk and J. S. Langer, Phys. Rev. E57, 7192 (1998).

    Article  PubMed  ADS  CAS  Google Scholar 

  44. K. Laaziri et al., Phys. Rev. Lett. 82, 3460 (1999) and subsequent studies by S. Roorda et al.

    Article  ADS  CAS  Google Scholar 

  45. T. Sakata, H. Mori and H. Fujita, Acta. Metall. Mater. 39, 817 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Bernas, H. (2007). AMORPHOUS SYSTEMS AND AMORPHIZATION. In: Sickafus, K.E., Kotomin, E.A., Uberuaga, B.P. (eds) Radiation Effects in Solids. NATO Science Series, vol 235. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5295-8_12

Download citation

Publish with us

Policies and ethics