• Bo Nordell
  • Kjell Skogsberg
Part of the NATO Science Series book series (NAII, volume 234)


Ice storage for cooling is an ancient technology which was common until thebeginning of the 20th century, when chillers were introduced. During the past fewdecades new techniques using both snow and ice for comfort cooling and food storage have been developed. Cold is extracted from snow or ice by re-circulation of water or air between the cooling load and the snow/ice. The snow cooling plant in Sundsvall, Sweden, is used for cooling of the regional hospital. The stored natural and artificial snow is used for comfort cooling from May to August. It was taken into operation in June 2000 and is the first of its kind. Here the plant is described and the experience of its first six years of operation is presented.


Heat Exchanger Wood Chip Thermal Energy Storage Cool Load Cool Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdelnour, R., B. Labrecque, and A. Underdown, 1994. Technoeconomic analysis of three seasonal cooling technologies, Ice box, frozen pond and waste snow pit, Proceedings of Calorstock’94 Conference on Thermal Energy Storage, Helsinki, Finland.Google Scholar
  2. André, E., S. Hogdin, and T. Derstroff, 2001. District cooling at Luleå University of Technology. Student Report, Division of Water Resources Engineering, Department of Environmental Engineering, Luleå University of Technology, Sweden.Google Scholar
  3. Buies, S., 1985. Engineering of a life-size Fabrikaglace. Centre de Recherche du Québec (CRIQ), Canada, Technical report No. FAB-85-051.Google Scholar
  4. Ericsson, H.E., 2003. Snökylanläggning, Sundsvalls sjukhus. Uppföljning av kontroll-program 2001–2002 (Snow cooling plant, The Sundsvall Regional Hospital. Follow-up of the control program 2001–2002), Commission 1658119 101, Sweco VIAK.Google Scholar
  5. Falk A., S. Hansson, J. Johansson, and C. Sandström, 2001. Snölager- En kall rapport. Snö för kylning av kraftvärmeverk (Snow storage—A cold report. Snow for cooling of a heat and power plant), Student Report, Division of Water Resources Engineering, Department of Environmental Engineering, Luleå University of Technology, Sweden.Google Scholar
  6. Hagerman, A., 2000. Snökylanläggning kontra kylmaskiner (Snow Cooling Plant vs. Chillers), Undergraduate Thesis, Division of Resource Management, Mid Sweden University.Google Scholar
  7. Hill, P., 2004. Projektförslag beträffande utveckling av snökyla i Sundsvall (Suggestions for projects concerning snow cooling in Sundsvall), Division of applied thermo-dynamics and refrigeration, Department of Energy Technology, KTH, Sweden.Google Scholar
  8. Iijima, K., M. Kobiyama, Y. Hanaoka, M. Kawamura, and H. Toda, 1999. Absorbability of contaminants from air by snow cooling system, Paper for the 8th Indoor Air 99 Conference in Edinburgh, Scotland.Google Scholar
  9. Johansson, P., 1999. Säsonglagring av kyla i bergrum (Seasonal cold storage in rock caverns), Master Thesis 1999:184 CIV, Luleå University of Technology, Department of Environmental Engineering, Division of Water Resources Engineering, Sweden.Google Scholar
  10. Kamimura, S., and T. Toita, 2004. Concept of Electric Power Output Control System for Atomic Power Generation Plant Utilizing Cool energy of Stored Snow. Presented at the 5th International Conference on Snow Engineering, July 5–7th 2004, Davos, Switzerland.Google Scholar
  11. Kobiyama, M., 1997. Economic Estimation of All-Air Type Snow Air-Conditioning System, Proceedings of Megastock, The 7th International Conference on Thermal Energy Storage. Conference in Sapporo, Hokkaido, Japan (pp. 611–616).Google Scholar
  12. Kobiyama, M., 2000. Department of Mechanical Engineering, Muroran Technical University, Japan, Private Communication.Google Scholar
  13. Larsson, P.-E., 2005. Landstingfastigheter Västernorrland (The County Council of Västernorrland), Sweden, Private Communication.Google Scholar
  14. Malmqvist, P.-A., 1983. Urban storm water pollutant resources. An analysis of inflows and outflows of nitrogen, phosphorus, lead, zinc, and copper in urban areas, Dissertation Series, Department of Sanitary Engineering, Chalmers University of Technology, Gothenburg, Sweden, ISBN 91-7032-106-X.Google Scholar
  15. Morofsky, E., 1981. Project Snowbowl. Public Works of Canada (PWC) Contract EN 280-0-3650.Google Scholar
  16. Morofsky, E., 1982. Long-term latent energy storage—the Canadian perspective, US China Conference on Energy, Resources and Environment.Google Scholar
  17. Morofsky, E., 1984. Developing and introducing an innovative building cooling technique: Strategy formulation based on market and technology considerations, Issues in strategic management, Adm. 6395.Google Scholar
  18. Nordell, B., and Sundin, E., 1998. Snöupplag för säsongslagring av kyla (Snow Deposit for Seasonal Storage of Cold). Division of Water Resources Engineering, Luleå University of Technology, Sweden, April 1998.Google Scholar
  19. Näslund, M., 2000. Fjärrkyla i Sundsvall baserad på sjövatten och lagrad snö (District cooling in Sundsvall based on sea water and stored snow). Master Thesis 2000:132 CIV, Luleå University of Technology, Department of Environmental Engineering, Division of Water Resources Engineering, Sweden.Google Scholar
  20. Näslund, M., 2001. Kylvattenförsörjning till SSAB Hardtech. Förprojektering (Supply of cooling water to SSAB Hardtech. Prestudy), Consultant Report, Energidalen i Sollefteå AB, 881 52 Sollefteå, Sweden.Google Scholar
  21. Okajima, K., H. Nakagawa, S. Matsuda and T. Yamasita (1997). A cold storage for food using only natural energy, Proceedings of Snow Engineering Conference, Balkem, Rotterdam, Netherlands, pp. 569–572, ISBN 90-5410-865-7.Google Scholar
  22. Paksoy, H.ö. (ed), 2003. Feasible boundary conditions and system configurations for cooling with TES, Subtask 2. Annex 14, Cooling in all climates with thermal energy storage, August 2003, International Energy Agency (IEA), Energy Conservation through Energy Storage (ECES).Google Scholar
  23. SEPA Swedish Environmental Protection Agency, 1990. Bedömningsgrunder för sjöar och vattendrag (Quality criteria for lakes and water courses), General Guidelines 90:4, ISBN 91-620-0042-X.Google Scholar
  24. SEPA Swedish Environmental Protection Agency, 1999. Bedömningsgrunder för miljökvalitet- sjöar och vattendrag (Environmental quality criteria – lakes and water courses). Report 4913, ISBN 91-620-4913-5.Google Scholar
  25. Skogsberg, K., 2005. Seasonal Snow Storage for Space and Process Cooling, Doctoral Thesis 2005:30, ISSN: 1402–1544, Division of Architecture and Infrastructure, Luleå University of Technology.Google Scholar
  26. Suzuki, T., S. Kobayashi, K. Tsushima, S. Shao, Y. Teng, and G. Liu, 1997. A case study on the utilization of snow and ice as natural cold energy source for low-temperature storage materials, Snow Engineering, pp. 553–558, ISBN 90 5410 865 7.Google Scholar
  27. Taylor, T.B., 1985. Ice ponds. American Institute of Physics (AIP) Conference Proceedings, November 25, 1985, Vol. 135 (1) 562–575.Google Scholar
  28. Viklander, M., and Malmqvist, P.-A., 1993. Melt water from snow deposits, Proceedings of the Sixth Conference on Urban Storm Drainage, 12–17 September 1993, Niagara Falls, Ontario, pp. 429–434.Google Scholar
  29. Wichmann, P., 2003. Miljökonsekvensanalys av snökylanläggning och kylmaskin (Environmental impact study of a snow cooling plant and a chiller), Master Thesis 2003:322 CIV, Division of RenewableEnergy, Department of Environmental Engineering, Luleå University of Technology, Sweden, ISSN 1402–1617.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Bo Nordell
    • 1
  • Kjell Skogsberg
    • 1
  1. 1.Division of Architecture and InfrastructureLuleå University of TechnologyLuleåSweden

Personalised recommendations