Advertisement

CELL ADHESION-MEDIATED RADIATION RESISTANCE: THE ROLE OF INTEGRINS AND INTEGRIN PROXIMAL PROTEIN

  • Nils Cordes
Chapter
Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 9)

Abstract

Existent or acquired resistance of tumor cells against genotoxic agents such as ionizing radiation or cytotoxic drugs is a widespread and clinically highly relevant phenomenon. Identifying cell-extracellular matrix interactions as critical, survival-improving factors within cellular resistance for normal and tumor cells has promoted intense research in this field. This chapter summarizes current and emerging data on how the molecular players such as integrins and intracellular protein kinases such as integrin-linked kinase and focal adhesion kinase coordinate signaling events for the cellular survival and growth response in DNA-damaged cells adherent to matrix proteins. Uncovering the molecular mechanisms may help to dissect central survival regulators in normal versus tumor tissue, which would provide the necessary knowledge for developing further innovative molecular-targeted anticancer strategies.

Keywords

Focal Adhesion Kinase Focal Adhesion Integrin Expression Small Cell Lung Cancer Cell Integrin Signaling Mediator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Hynes, R.O., 2002, Integrins: Bidirectional, allosteric signaling machines, Cell 110:673–687.PubMedGoogle Scholar
  2. 2.
    Danen, E.H., 2005, Integrins: regulators of tissue function and cancer progression, Curr. Pharm. Des. 11:881–891.PubMedGoogle Scholar
  3. 3.
    Wozniak, M.A., Modzelewska, K., Kwong, L., and Keely, P.J., 2004, Focal adhesion regulation of cell behavior, Biochim. Biophys. Acta 1692:103–119.PubMedGoogle Scholar
  4. 4.
    Hauck, C.R., Hsia, D.A., and Schlaepfer, D.D., 2002, The focal adhesion kinase–a regulator of cell migration and invasion, IUBMB Life 53:115–119.PubMedGoogle Scholar
  5. 5.
    Watt, P.M., 2002, Role of integrins in regulating epidermal adhesion, growth and differentiation, EMBO J. 21:19–26.Google Scholar
  6. 6.
    Brakebusch, C., and Fassler, R., 2003, The integrin-actin connection, an eternal love affair, EMBO J. 22:2324–2333.PubMedGoogle Scholar
  7. 7.
    Comoglio, P.M., Boccaccio, C., and Trusolino, L., 2003, Interactions between growth factor receptors and adhesion molecules: breaking the rules, Curr. Opin. Cell Biol. 15:565–571.PubMedGoogle Scholar
  8. 8.
    Giancotti, F.G., and Tarone, G., 2003, Positional control of cell fate through joint integrin/receptor protein kinase signaling, Annu. Rev. Cell Dev. Biol. 19:173–206.PubMedGoogle Scholar
  9. 9.
    Hannigan, G.E., Leung-Hagesteijn, C., Fitz-Gibbon, L., Coppolino, M.G., Radeva, G., Filmus, J., Bell, J.C., and Dedhar, S., 1996, Regulation of cell adhesion and anchorage-dependent growth by a new β1-integrin-linked protein kinase, Nature 379:91–96.PubMedGoogle Scholar
  10. 10.
    Schaller, M.D., 2001, Biochemical signals and biological responses elicited by the focal adhesion kinase, Biochem. Biophys. Acta 1540:1–21.PubMedGoogle Scholar
  11. 11.
    Schwartz, M.A., 2001, Integrin signaling revisited, Trends Cell Biol. 12:466–470.Google Scholar
  12. 12.
    Ruoslahti, E., 1997, Integrins as signaling molecules and targets for tumor therapy, Kidney Int. 51:1413–1417.PubMedGoogle Scholar
  13. 13.
    Mizejewski, G.J., 1999, Role of integrins in cancer: survey of expression patterns, Proc. Soc. Exp. Biol. Med. 222:124–138.PubMedGoogle Scholar
  14. 14.
    Hanahan, D., and Weinberg, R.A., 2000, The hallmarks of cancer, Cell 100, 57–70.PubMedGoogle Scholar
  15. 15.
    Jin, H., and Varner, J., 2004, Integrins: roles in cancer development and as treatment targets, Brit. J. Cancer 90:561–565.PubMedGoogle Scholar
  16. 16.
    Davis, T.L., Cress, A.E., Dalkin, B.L., and Nagle, R.B., 2001, Unique expression pattern of the alpha6beta4 integrin and laminin-5 in human prostate carcinoma, Prostate 46:240–248.PubMedGoogle Scholar
  17. 17.
    Witkowski, C.M., Bowden, G.T., Nagle, R.B., and Cress, A.E., 2000, Altered surface expression and increased turnover of the alpha6beta4 integrin in an undifferentiated carcinoma, Carcinogenesis 21:325–330.PubMedGoogle Scholar
  18. 18.
    Cress, A.E., Rabinovitz, I, Zhu, W., and Nagle, R.B., 1995, The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression, Cancer Metastasis Rev. 14:219–228.PubMedGoogle Scholar
  19. 19.
    Chen, F.A., Repasky, E.A., and Bankert, R.B., 1991, Human lung tumor-associated antigen identified as an extracellular matrix adhesion molecule, J. Exp. Med. 173:1111–1119.PubMedGoogle Scholar
  20. 20.
    Plath, T., Detjen, K., Welzel, M., von Marschall, Z., Murphy, D., Schirner, M., Wiedenmann, B., and Rosewicz, S., 2000, A novel function for the tumor suppressor p16(INK4a): induction of anoikis via upregulation of the alpha(5)beta(l) fibronectin receptor, J. Cell Biol. 150:1467–1478.PubMedGoogle Scholar
  21. 21.
    Kashiwagi, H., Tomiyama, Y., Tadokoro, S., Honda, S., Shiraga, M., Mizutani, H., Handa, M., Kurata, Y., Matsuzawa, Y., and Shattil, S.J., 1999, A mutation in the extracellular cysteine-rich repeat region of the beta3 subunit activates integrins alphallbbeta3 and alpha Vbeta3, Blood 93:2559–2568.PubMedGoogle Scholar
  22. 22.
    Guo, H.B., Lee, L, Bryan, B.T., and Pierce, M., 2005, Deletion of mouse embryo fibroblast N-acetylglucosaminyltransferase V stimulates alpha5betal integrin expression mediated by the protein kinase C signaling pathway, J. Biol. Chem. 280:8332–8342.PubMedGoogle Scholar
  23. 23.
    Fuks, Z., Vlodavsky, I, Andreeff, M., McLoughlin, M., and Haimovitz-Friedman, A., 1992, Effects of extracellular matrix on the response of endothelial cells to radiation in vitro, Eur. J. Cancer 28A:725–731.PubMedGoogle Scholar
  24. 24.
    Damiano, J.S., Cress, A.E., Hazlehurst, L.A., Shtil, A.A., and Dalton, W.S., 1999, Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines, Blood 93:1658–1667.PubMedGoogle Scholar
  25. 25.
    Rose, R.W., Grant, D.S., O'Hara, M.D., and Williamson, S.K., 1999, The role of laminin-1 in the modulation of radiation damage in endothelial cells and differentiation, Radiat. Res. 152:14–28.PubMedGoogle Scholar
  26. 26.
    Sethi, T., Rintoul, R.C., Moore, S.M., MacKinnon, A.C., Salter, D., Choo, C., Chilvers, E.R., Dransfield, I., Donnelly, S.C., Strieter, R., and Haslett, C., 1999, Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo, Nature Med 5:662–668.PubMedGoogle Scholar
  27. 27.
    Cordes, N., Blaese, M.A., Meineke, V., and van Beuningen, D., 2002, Ionizing radiation induces up-regulation of functional β1-integrin in lung tumour cell lines in vitro, Int. J. Radiat. Biol. 78:347–357.PubMedGoogle Scholar
  28. 28.
    Lewis, J.M., Truong, T.N., and Schwartz, M.A., 2002, Integrins regulate the apoptotic response to DNA damage through modulation of p53, Proc. Natl. Acad. Sci. USA 99:3627–3632.PubMedGoogle Scholar
  29. 29.
    Cordes, N., and Meineke, V., 2003, Cell adhesion-mediated radioresistance (CAM-RR): Extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro, Strahlenther. Onkol. 179:337–344.PubMedGoogle Scholar
  30. 30.
    Fridman, R., Giaccone, G., Kanemoto, T., Martin, G.R., Gazdar, A.F., and Mulshine, J.L., 1990. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines, Proc. Natl. Acad. Sci. USA 87:6698–6702.PubMedGoogle Scholar
  31. 31.
    Kraus, A.C., Ferber, I., Bachmann, S.O., Specht, H., Wimmel, A., Gross, M.W., Schlegel, J., Suske, G., and Schuermann, M., 2002, In vitro chemo- and radio-resistance in small cell lung cancer correlates with cell adhesion and constitutive activation of AKT and MAP kinase pathways, Oncogene 21:8683–8695.PubMedGoogle Scholar
  32. 32.
    Maubant, S., Cruet-Hennequart, S., Poulain, L., Carreiras, F., Sichel, F., Luis, J., Staedel, C., Gauduchon, P., 2002, Altered adhesion properties and alphav integrin expression in a cisplatin-resistant human ovarian carcinoma cell line, Int. J. Cancer 97:186–194.PubMedGoogle Scholar
  33. 33.
    Miyamoto, H., Murakami, T., Tsuchida, K., Sugino, H., Miyake, H., and Tashiro, S., 2004, Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins, Pancreas 28:38–44.PubMedGoogle Scholar
  34. 34.
    Menendez, J.A., Vellon, L., Mehmi, I., Teng, P.K., Griggs, D.W., and Lupu, R., 2005, A novel CYR61-triggered ‘CYR61-alphavbeta3 integrin loop’ regulates breast cancer cell survival and chemosensitivity through activation of ERK1/ERK2 MAPK signaling pathway, Oncogene 24:761–779.PubMedGoogle Scholar
  35. 35.
    Zhang, H., Ozaki, I., Mizuta, T., Matsuhashi, S., Yoshimura, T., Hisatomi, A., Tadano, J., Sakai, T., and Yamamoto, K., 2002, Beta 1-integrin protects hepatoma cells from chemotherapy induced apoptosis via a mitogen-activated protein kinase dependent pathway, Cancer 95:896–906.PubMedGoogle Scholar
  36. 36.
    Uhm, J.H., Dooley, N.P., Kyritsis, A.P., Rao, J.S., and Gladson, C.L., 1999, Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death, Clin. Cancer Res. 5:1587–1594.PubMedGoogle Scholar
  37. 37.
    Damiano, J.S., Hazlehurst, L.A., and Dalton, W.S., 2001, Cell adhesion-mediated drug resistance (CAM-DR) protects the K562 chronic myelogenous leukemia cell line from apoptosis induced by BCR/ABL inhibition, cytotoxic drugs, and gamma-irradiation, Leukemia 15:1232–1239.PubMedGoogle Scholar
  38. 38.
    de la Fuente, M.T., Casanova, B., Cantero, E., Hernandez del Cerro, M., Garcia-Marco, J., Silva, A., and Garcia-Pardo, A., 2003, Involvement of p53 in alpha4betal integrinmediated resistance of B-CLL cells to fludarabine, Biochem. Biophys. Res. Commun. 311:708–712.PubMedGoogle Scholar
  39. 39.
    de la Fuente, M.T., Casanova, B., Garcia-Gila, M., Silva, A., and Garcia-Pardo, A., 1999, Fibronectin interaction with alpha4betal integrin prevents apoptosis in B cell chronic lymphocytic leukemia: correlation with Bcl-2 and Bax, Leukemia 13:266–274.PubMedGoogle Scholar
  40. 40.
    Hazlehurst, L.A., Damiano, J.S., Buyuksal, I., Pledger, W.J., and Dalton, W.S., 2000, Adhesion to fibronectin via βl-integrins regulates p27kipl levels and contributes to cell adhesion mediated drug resistance (CAM-DR), Oncogene 19:4319–4327.PubMedGoogle Scholar
  41. 41.
    Kasahara, T., Koguchi, E., Funakoshi, M., Aizu-Yokota, E., and Sonoda, Y., 2002, Antiapoptotic action of focal adhesion kinase (FAK) against ionizing radiation, Antioxid. Redox Signal. 4:491–499.PubMedGoogle Scholar
  42. 42.
    Cordes, N., 2004, Overexpression of hyperactive integrin-linked kinase leads to increased cellular radiosensitivity, Cancer Res. 64:5683–5692.PubMedGoogle Scholar
  43. 43.
    Werb, Z., Vu, T.H., Rinkenberger, J.L., and Coussens, L.M., 1999, Matrix-degrading proteases and angiogenesis during development and tumor formation, APMIS 107:11-18.PubMedGoogle Scholar
  44. 44.
    Rundhaug, J.E., 2005, Matrix metalloproteinases and angiogenesis, J. Cell. Mol. Med. 9:267–285.PubMedGoogle Scholar
  45. 45.
    Hazlehurst, L.A., Valkov, N., Wisner, L., Storey, J.A., Boulware, D., Sullivan, D.M., and Dalton, W.S., 2001, Reduction in drug-induced DNA double-strand breaks associated with betal integrin-mediated adhesion correlates with drug resistance in U937 cells, Blood 98:1897–1903.PubMedGoogle Scholar
  46. 46.
    Aoudjit, F., and Vuori, K., 2001, Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells, Oncogene 20:4995–5004.PubMedGoogle Scholar
  47. 47.
    Cordes, N., Beinke, C., Plasswilm, L., and van Beuningen, D., 2004, Irradiation and various cytotoxic drugs enhance tyrosine phosphorylation and β1-integrin clustering in human A549 lung cancer cells in a substratum-dependent manner in vitro, Strahlenther. Onkol. 180:157–164.PubMedGoogle Scholar
  48. 48.
    Seidler, J., Durzok, R., Brakebusch, C., and Cordes, N., 2005, Interactions of the integrin subunit βlA with protein kinase B/Akt, p130Cas and paxillin contribute to regulation of radiation survival, Radiother. Oncol. 76:129–134.PubMedGoogle Scholar
  49. 49.
    Cordes, N., Seidler, J., Durzok, R., Geinitz, H., and Brakebusch, C., 2006, βl-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury, Oncogene, in press.Google Scholar
  50. 50.
    Cordes, N., and van Beuningen, D., 2003, Cell adhesion to the extracellular matrix protein fibronectin modulates radiation-dependent G2 phase arrest involving integrinlinked kinase (ILK) and glycogen synthase kinase-3β (GSK-3β) in vitro, Brit. J. Cancer 88:1470–1479.PubMedGoogle Scholar
  51. 51.
    van der Kuip, H., Goetz, A.W., Miething, C., Duyster, J., and Aulitzky, W.E., 2001, Adhesion to fibronectin selectively protects Bcr-Abl+ cells from DNA damage-induced apoptosis, Blood 98:1532–1541.PubMedGoogle Scholar
  52. 52.
    Tubiana, M., 1982, L.H. Gray Medal lecture: cell kinetics and radiation oncology, Int. J. Radiat. Oncol. Biol. Phys. 8:1471–1489.PubMedGoogle Scholar
  53. 53.
    Tsang, R.W., Juvet, S., Pintilie, M., Hill, R.P., Wong, C.S., Milosevic, M., Chapman, W., Levin, W., Manchul, L.A., and Fykes, A.W., 2003, Pretreatment proliferation parameters do not add predictive power to clinical factors in cervical cancer treated with definitive radiation therapy, Clin. Cancer Res. 9:4387–4395.PubMedGoogle Scholar
  54. 54.
    Kirkpatrick, J.P., and Marks, L.B., 2004, Modeling killing and repopulation kinetics of subclinical cancer: direct calculations from clinical data, Int. J. Radiat. Oncol. Biol. Phys. 58:641–654.PubMedGoogle Scholar
  55. 55.
    Jackson, S.P., 2002, Sensing and repairing DNA double-strand breaks, Carinogenesis 23:687–696.Google Scholar
  56. 56.
    Pawlik, T.M., and Keyomarsi, K., 2004, Role of cell cycle in mediating sensitivity to radiotherapy, Int. J. Radiat. Oncol. Biol. Phys. 59:928–942.PubMedGoogle Scholar
  57. 57.
    Gadbois, D.M., Bradbury, E.M., and Lehnert, B.E., 1997, Control of radiation-induced G1 arrest by cell-substratum interactions, Cancer Res. 57:1151–1156.PubMedGoogle Scholar
  58. 58.
    Dimitrijevic-Bussod, M., Balzaretti-Maggi, V.S., and Gadbois, D.M., 1999, Extracellular matrix and radiation G1 cell cycle arrest in human fibroblasts, Cancer Res. 59:4843–4847.PubMedGoogle Scholar
  59. 59.
    Cordes, N., and van Beuningen, D., 2004, Arrest of human lung fibroblasts in G2 phase after irradiation is regulated by converging phosphatidylinositol-3 kinase and betal-integrin signaling in vitro, Int. J. Radiat. Oncol. Biol. Phys. 58:453–462.PubMedGoogle Scholar
  60. 60.
    Cordes, N., and Beinke, C., 2004, Fibronectin alters A549 human lung cancer cell survival after irradiation, Cancer Biol. Ther. 3:47–53.PubMedGoogle Scholar
  61. 61.
    Little, J.B., and Nagasawa, H., 1985, Effect of confluent holding on potentially lethal damage repair, cell cycle progression, and chromosomal aberrations in human normal and ataxia-telangiectasia fibroblasts, Radiat. Res. 101:81–93.PubMedGoogle Scholar
  62. 62.
    Lane, D.P., 1992, Cancer. p53, guardian of the genome, Nature 358:15–16.PubMedGoogle Scholar
  63. 63.
    O'Connor, P.M., 1997, Mammalian G1 and G2phase checkpoints, Cancer Surv. 29:151–182.PubMedGoogle Scholar
  64. 64.
    Monferran, S., Muller, C., Mourey, L., Frit, P., and Salles, B., 2004, The membraneassociated form of the DNA repair protein Ku is involved in cell adhesion to fibronectin, J. Mol. Biol. 337:503–511.PubMedGoogle Scholar
  65. 65.
    Jones, C.B., McIntosh, J., Huang, H., Graytock, A., and Hoyt, D.G., 2001, Regulation of bleomycin-induced DNA breakage and chromatin structure in lung endothelial cells by integrins and poly(ADP-ribose) polymerase, Mol. Pharmacol. 59:69–75.PubMedGoogle Scholar
  66. 66.
    Kremer, C.L., Schmelz, M., and Cress, A.E., 2005, Integrin-dependent amplification of the G2 arrest induced by ionizing radiation, Prostate 2006 Jan 1;66(1):88–96.Google Scholar
  67. 67.
    Meineke, V., Müller, K., Ridi, R., Cordes, N., Kohn, P.M., Mayerhofer, A., Ring, J., and van Beuningen, D., 2004, Development and evaluation of a skin organ model for the analysis of radiation effects, Strahlenther. Onkol. 180:102–108.PubMedGoogle Scholar
  68. 68.
    Cordes, N., Hansmeier, B., Beinke, C., Meineke, V., and van Beuningen, D., 2003, Irradiation differentially affects substratum-dependent survival, adhesion, and invasion of glioblastoma cell lines, Brit. J. Cancer 89:2122–2132.PubMedGoogle Scholar
  69. 69.
    Dong, L., Sun, H., Liu, W., Tao, D., Zhang, Y., and Xu, H., 1999, Effect of ligustrazine on expression of adherent molecule CD49d and cyclin D2 in hematopoietic cells in acute radiation injured mice, J. Tongji Med. Univ. 19:99–101.PubMedGoogle Scholar
  70. 70.
    Simon, E.L., Goel, H.L., Teider, N., Wang, T., Languino, L.R., and Fitzgerald, T.J., 2005, High dose fractionated ionizing radiation inhibits prostate cancer cell adhesion and beta(l) integrin expression, Prostate 64:83–91.PubMedGoogle Scholar
  71. 71.
    Hallahan, D., Geng, L., Qu, S., Scarfone, C., Giorgio, T., Donnelly, E., Gao, X., and Clanton, J., 2003, Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels, Cancer Cell 3(1):63–74.PubMedGoogle Scholar
  72. 72.
    Brown, C.K., Khodarev, N.N., Yu, J., Moo-Young, T., Labay, E., Darga, T.E., Posner, M.C., Weichselbaum, R.R., and Mauceri, H.J., 2004, Glioblastoma cells block radiation-induced programmed cell death of endothelial cells, FEBS Lett. 565:167–170.PubMedGoogle Scholar
  73. 73.
    Wild-Bode, C., Weller, M., Rimner, A., Dichgans, J., and Wick, W., 2001, Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma, Cancer Res. 61:2744–2750.PubMedGoogle Scholar
  74. 74.
    Wang, X.Y., Liu, T., Zhu, C.Z., Li, Y., Sun, R., Sun, C.Y., and Wang, A.X., 2005, Expression of KAI1, MRP-1, and FAK proteins in lung cancer detected by high-density tissue microarray, Ai Zheng 24:1091–1095.PubMedGoogle Scholar
  75. 75.
    Itoh, S., Maeda, T., Shimada, M., Aishima, S., Shirabe, K., Tanaka, S., and Maehara, Y., 2004, Role of expression of focal adhesion kinase in progression of hepatocellular carcinoma, Clin. Cancer Res. 10:2812–2817.PubMedGoogle Scholar
  76. 76.
    Aronsohn, M.S., Brown, H.M., Hauptman, G., and Kornberg, L.J., 2003, Expression of focal adhesion kinase and phosphorylated focal adhesion kinase in squamous cell carcinoma of the larynx, Laryngoscope 113:1944–1948.PubMedGoogle Scholar
  77. 77.
    Watermann, D.O., Gabriel, B., Jager, M., Orlowska-Volk, M., Hasenburg, A., zur Hausen, A., Gitsch, G., and Stickeler, E., 2005, Specific induction of pp125 focal adhesion kinase in human breast cancer, Brit. J. Cancer Aug 23; [Epub ahead of print].Google Scholar
  78. 78.
    Kim, S.J., Park, J.W., Yoon, J.S., Mok, J.O., Kim, Y.J., Park, H.K., Kim, C.H., Byun, D.W., Lee, Y.J., Jin, S.Y., Suh, K.I., and Yoo, M.H., 2004, Increased expression of focal adhesion kinase in thyroid cancer: immunohistochemical study, J. Korean Med. Sci. 19:710–715.PubMedGoogle Scholar
  79. 79.
    Grisaru-Granovsky, S., Salah, Z., Maoz, M., Pruss, D., Beller, U., and Bar-Shavit, R., 2005, Differential expression of protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples, Int. J. Cancer 113:372–378.PubMedGoogle Scholar
  80. 80.
    Gutenberg, A., Bruck, W., Buchfelder, M., and Ludwig, H.C., 2004, Expression of tyrosine kinases FAK and Pyk2 in 331 human astrocytomas, Acta Neuropathol. (Ber1) 108:224–230.Google Scholar
  81. 81.
    Tamagiku, Y., Sonoda, Y., Kunisawa, M., Ichikawa, D., Murakami, Y., Aizu-Yokota, E., and Kasahara, T., 2004, Down-regulation of procaspase-8 expression by focal adhesion kinase protects HL-60 cells from TRAIL-induced apoptosis, Biochem. Biophys. Res. Commun. 323:445–452.PubMedGoogle Scholar
  82. 82.
    Beinke, C., van Beuningen, D., and Cordes, N., 2003, Ionizing radiation modulates expression and tyrosine phosphorylation of the focal adhesion-associated proteins focal adhesion kinase (FAK) and its substrates p130cas and paxillin in A549 human lung carcinoma cells in vitro, Int. J. Radiat. Biol. 79:721–731.PubMedGoogle Scholar
  83. 83.
    Riley, P.A., 1994, Free radicals in biology: oxidative stress and the effects of ionizing radiation, Int. J. Radiat. Biol. 65:27–33.PubMedGoogle Scholar
  84. 84.
    Zent, R., Ailenberg, M., Downey, GP., and Silverman, M., 1999, ROS stimulate reorganization of mesangial cell-collagen gels by tyrosine kinase signaling, Am. J. Physiol. 276:F278–87.PubMedGoogle Scholar
  85. 85.
    Riedl, S.J., and Shi, Y., 2004, Molecular mechanisms of caspase regulation during apoptosis, Nat. Rev. Mol. Cell Biol. 5:897–907.PubMedGoogle Scholar
  86. 86.
    Sastry, S.K., and Burridge, K., 2000, Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics, Exp Cell Res. 261:25–36.PubMedGoogle Scholar
  87. 87.
    Hsu, S.L., Cheng, C.C., Shi, Y.R., and Chiang, C.W., 2001, Proteolysis of integrin alpha5 and beta1 subunits involved in retinoic acid-induced apoptosis in human hepatoma Hep3B cells, Cancer Lett. 167:193–204.PubMedGoogle Scholar
  88. 88.
    Adams, S.W., Wang, L., Fortney, J., and Gibson, L.F., 2004, Etoposide differentially affects bone marrow and dermal derived endothelial cells, J. Cell Mol. Med. 8:338–348.PubMedGoogle Scholar
  89. 89.
    Utsubo, R., Sonoda, Y., Takahashi, R., Iijima, S., Aizu-Yokota, E., and Kasahara, T., 2004, Proteome analysis of focal adhesion kinase (FAK)-overexpressing cells, Biol. Pharm. Bull. 27:1735–1741.PubMedGoogle Scholar
  90. 90.
    Persad, S., Attwell, S., Gray, V., Delcommenne, M., Troussard, A., Sanghera, J., and Dedhar, S., 2000, Inhibition of integrin-linked kinase (ILK) suppresses activation of protein kinase B/Akt and induces cell cycle arrest and apoptosis of PTEN-mutant prostate cancer cells, Proc. Natl. Acad. Sci. USA 97:3207–3212.PubMedGoogle Scholar
  91. 91.
    Takanami, I., 2005, Increased expression of integrin-linked kinase is associated with shorter survival in non-small cell lung cancer, BMC Cancer 5:1.PubMedGoogle Scholar
  92. 92.
    Bravou, V., Klironomos, G., Papadaki, E., Stefanou, D., and Varakis, J., 2003, Integrin-linked kinase (ILK) expression in human colon cancer, Brit. J. Cancer 89:2340–2341.PubMedGoogle Scholar
  93. 93.
    Ito, R., Oue, N., Zhu, X., Yoshida, K., Nakayama, H., Yokozaki, H., and Yasui, W., 2003, Expression of integrin-linked kinase is closely correlated with invasion and metastasis of gastric carcinoma, Virchows Arch. 442:118–123.PubMedGoogle Scholar
  94. 94.
    Ahmed, N., Riley, C., Oliva, K., Stutt, E., Rice, G.E., and Quinn, M.A., 2003, Integrin-linked kinase expression increases with ovarian tumour grade and is sustained by peritoneal tumour fluid, J. Pathol. 201:229–237.PubMedGoogle Scholar
  95. 95.
    Dai, D.L., Makretsov, N., Campos, E.I., Huang, C., Zhou, Y., Huntsman, D., Martinka, M., and Li, G., 2003, Increased expression of integrin-linked kinase is correlated with melanoma progression and poor patient survival, Clin. Cancer Res. 9:4409–4414.PubMedGoogle Scholar
  96. 96.
    Delcommenne, M., Tan, C., Gray, V., Ruel, L., Woodgett, J., and Dedhar, S., 1998, Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/Akt by the integrin-linked kinase, Proc. Natl. Acad. Sci. USA 95:11211–11216.PubMedGoogle Scholar
  97. 97.
    Persad, S., Attwell, S., Gray, V., Mawji, N., Deng, J.T., Leung, D., Yan, J., Sanghera, J., Walsh, M.P., and Dedhar, S., 2001, Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343, J. Biol. Chem. 276:27462–27469.PubMedGoogle Scholar
  98. 98.
    Attwell, S., Roskelley, C., and Dedhar, S., 2000, The integrin-linked kinase (ILK) suppresses anoikis, Oncogene 19:3811–3815.PubMedGoogle Scholar
  99. 99.
    Rearden, A., 1994, A new LIM protein containing an autoepitope homologous to “senescent cell antigen”, Biochem. Biophys. Res. Commun. 201:1124–1131.PubMedGoogle Scholar
  100. 100.
    Wu, C., and Dedhar, S., 2001, Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes, J. Cell Biol. 155:505–510.PubMedGoogle Scholar
  101. 101.
    Duxbury, M.S., Ito, H., Benoit, E., Waseem, T., Ashley, S.W., and Whang, E.E., 2005, RNA interference demonstrates a novel role for integrin-linked kinase as a determinant of pancreatic adenocarcinoma cell gemcitabine chemoresistance, Clin. Cancer Res. 11:3433–3438.PubMedGoogle Scholar
  102. 102.
    Hannigan, G., Troussard, A.A., and Dedhar, S., 2005, Integrin-linked kinase: a cancer therapeutic target unique among its ILK, Nat. Rev. Cancer 5:51–63.PubMedGoogle Scholar
  103. 103.
    Edwards, L.A., Thiessen, B., Dragowska, W.H., Daynard, T., Bally, M.B., and Dedhar, S., 2005, Inhibition of ILK in PTEN-mutant human glioblastomas inhibits PKB/Akt activation, induces apoptosis, and delays tumor growth, Oncogene 24:3596–3605.PubMedGoogle Scholar
  104. 104.
    Yau, C.Y., Wheeler, J.J., Sutton, K.L., and Hedley, D.W., 2005, Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the PI3K/PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts, Cancer Res. 65:1497–504.PubMedGoogle Scholar
  105. 105.
    Tucker, G.C., 2002, Inhibitors of integrins, Curr. Opin. Pharmacol. 2:394–402.PubMedGoogle Scholar
  106. 106.
    Mousa, S.A., 2002, Anti-integrin as novel drug-discovery targets: Potential therapeutic ad diagnostic implications, Curr. Opin. Chem. Biol. 6:534–541.PubMedGoogle Scholar
  107. 107.
    Damiano, J.S., 2002, Integrins as novel drug targets for overcoming innate drug resistance, Curr. Cancer Drug Targets 2:37–43.PubMedGoogle Scholar
  108. 108.
    Rust, W.L., Carper, S.W., and Plopper, G.E., 2002, The promise of integrins as effective targets for anticancer agents, J. Biomed. Biotechnol. 2:124–130.PubMedGoogle Scholar
  109. 109.
    Tucker, G.C., 2003, Alpha v integrin inhibitors and cancer therapy, Curr. Opin. Investig. Drugs 4:722–731.PubMedGoogle Scholar
  110. 110.
    Hynes, N.E., and Lane, H.A., 2005, ERBB receptors and cancer: the complexity of targeted inhibitors, Nat. Rev. Cancer 5:341–354.PubMedGoogle Scholar
  111. 111.
    Baker, E.K., and El-Osta, A., 2003, The rise of DNA methylation and the importance of chromatin on multidrug resistance in cancer, Exp. Cell Res. 290:177–194.PubMedGoogle Scholar
  112. 112.
    Nardi, V., Azam, M., and Daley, G.Q., 2004, Mechanisms and implications of imatinib resistance mutations in BCR-ABL, Curr. Opin. Hematol. 11:35–43.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Nils Cordes
    • 1
  1. 1.OcoRay-Radiation Research in Oncology, Medical Faculty Carl Gustav CarusUniversity of TechnologyDresdenGermany

Personalised recommendations