Advertisement

CYTOKERATIN 6 EXPRESSION IN PROSTATE STEM CELLS

  • Monika Schmelz
  • Anil Prasad
Chapter
  • 483 Downloads
Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 9)

Abstract

The simplified epithelium of the human prostate gland is representative of a slowly growing but morphologically dynamic tissue. The normal prostate gland contains, in part, the persistent basal cell population and the putative stem cells. It has been postulated by others that the transformation of normal glandular structures into cancer glands and subsequent tumor progression may involve aberrant regulation of the stem cell population. In this chapter, the induction of cytokeratin 6 expression is postulated to participate in the transition of a stem cell from its specialized niche within the basal cell population into a differentiated state. The basic morphological features of the normal prostate gland are reviewed and the molecular features of the prostate stem cells are discussed. Data is presented to illustrate the defining features of a new epithelial phenotype in the prostate gland, containing both cytokeratin 6 expression and the capability to differentiate and reach from the basal cell layer to the luminal surface of the gland. These results underscore the plasticity of the epithelial cell layers and the potential for cytokeratin 6 to serve as an efficient marker for an important subset of the basal cell population. Further investigation will be required in animal models to determine the essential nature of the cytokeratin 6 expression for the normal development of the prostate gland.

Keywords

Prostate Cancer Basal Cell Human Prostate Prostate Gland Prostatic Intraepithelial Neoplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    American Cancer Society: Cancer Facts and Figures. Atlanta, GA. American Cancer Society, 2004.Google Scholar
  2. 2.
    Ekman, P. Genetic and environmental factors in prostate cancer genesis: identifying high-risk cohorts. Eur Urol. 35(5–6): 362–9, 1999.PubMedCrossRefGoogle Scholar
  3. 3.
    Gardner, W. Hypothesis: the prenatal origins of prostate cancer. Human Pathology 26: 1291–1292, 1995.PubMedCrossRefGoogle Scholar
  4. 4.
    Gardner, W., Culberson, D. Atrophy and proliferation in the young adult prostate. J Urol. 137: 53–56, 1987.PubMedGoogle Scholar
  5. 5.
    Isaacs, J., Coffey, D. Etiology and disease process of benign prostatic hyperplasia. The Prostate 2: 33–50, 1989.Google Scholar
  6. 6.
    Reya, T., Morrison S., Clarke, M., Weissman, I. Stem cells, cancer and cancer stem cells. Nature 414: 105–111, 2001.PubMedCrossRefGoogle Scholar
  7. 7.
    di, Sant'Agnese, P., Cockett, A. Neuroendocrine differentiation in prostatic malignancy.Cancer 78: 357–361, 1996.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu, A, True, L., LaTray, L., Nelson, P., Ellis, W., Vessella, R., Lange, P., Hood, L., Van den, Engh, G. Cell-cell interaction in prostate gene regulation and cytodifferentiation. Proc Nat Acad Sci, USA 94: 10705–10710, 1997.CrossRefGoogle Scholar
  9. 9.
    McDonnell, T., Troncoso, P., Brisbay, S., Logothetis, C., Chung, L., Hsieh, J., Tu, S., Campbell, M. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 52: 6940–6944, 1992.PubMedGoogle Scholar
  10. 10.
    Bonkhoff, H., Stein, U., Remberger, K. Multidirectional differentiation in the normal, hyperplastic, and neoplastic human prostate. Hum Pathol. 25: 42–46, 1994.PubMedCrossRefGoogle Scholar
  11. 11.
    Sherwood, E., Berg, L., Mitchell, N., McNeal, J., Kozlowski, J., Lee, C. Differential cytokeratin expression in normal hyperplastic and malignant epithelial cells from human prostate. J Urol. 143: 167–171, 1990.PubMedGoogle Scholar
  12. 12.
    Nagle, R., Hao, J., Knox, J., Dalkin, B., Clark, V., Cress, A. Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue. Am J Pathol. 146: 1498–507, 1995.PubMedGoogle Scholar
  13. 13.
    Brar, P.K., Dalkin, B.L., Weyer, C., Sallam, K., Virtanen, I., Nagle, RB. Laminin alpha-1, alpha-3, and alpha-5 chain expression in human prepubetal benign prostate glands and adult benign and malignant prostate glands. The Prostate, 55 (1): 65–70, 2003.PubMedCrossRefGoogle Scholar
  14. 14.
    Bissell, M., Nelson, W. Cell-to-cell contact and extracellular matrix. Integration of form and function: the central role of adhesion molecules. Curr Opin Cell Biol. 11: 537, 1999.CrossRefGoogle Scholar
  15. 15.
    Green, K., Jones, J. Desmosomes and hemidesmosomes: Structure and function of molecular components. FASEB J. 10: 871–880, 1996.PubMedGoogle Scholar
  16. 16.
    Olumi, A.F., Grossfeld, G.D., Hayward, S.W., Carroll, P.R., Tlsty, T.D., Cunha, G.R. Carcinoma-associated Fibroblasts Direct Tumor Progression of Initiated Human Prostatic Epithelium. Cancer Res. 59: 5002–5011, 1999.PubMedGoogle Scholar
  17. 17.
    Sakr, W.A., Haas, G.P., Cassin, B.J., Pontes, J.E., Crissman, J.D. Frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J. Urol 150: 379–385; 1993.PubMedGoogle Scholar
  18. 18.
    Sakr, W.A., Grignon, D.J., Crissman, J.D., Heilbrun, L.K., Cassin, B.J., Pontes, J.J., Haas, G.P. High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20-69. An autopsy study of 249 cases. In Vivo 8: 439–443; 1994.PubMedGoogle Scholar
  19. 19.
    Qian, J., Wollan, P., Bostwick, D.G. The extent and multicentricity of high grade prostatic intraepithelial neoplasia in clinically localized prostatic adenocarcinoma. Hum Pathol 28 (2): 143–148, 1997.PubMedCrossRefGoogle Scholar
  20. 20.
    Bostwick, D.G. Target populations and strategies for chemoprevention trials of prostate cancer. J Cell Biochem Suppl.19: 191–6, 1994.PubMedGoogle Scholar
  21. 21.
    Sakr, W.A., Grigon, D.J., Haas, G.P., Schomer, K.L., Heilbrun, L.K., Cassin, B.J., Powerll, I.J., Montie, J.A., Pontes, J.E., Crissman, J.D. Epidemiology of high grade prostatic intraepithelial neoplasia. Pathol Res Pract 19 (9): 838–41, 1995.Google Scholar
  22. 22.
    Bostwick, D.G., Qian, J., Frankel, K. The incidence of high grade prostatic intraepithelial neoplasia in needle biopsies. J Urol. 154 (5): 1791–4, 1995.PubMedCrossRefGoogle Scholar
  23. 23.
    DeMarzo, A.M., Nelson, W.G., Isaacs, W.B., Epstein, J.I. Pathological and molecular aspects of prostate cancer. Lancet 361(9361): 955–64, 2003.PubMedCrossRefGoogle Scholar
  24. 24.
    Montironi, R., Galluzzi, C.M., Diamanti, L., Giannulus, I., Pisani, E., Scarpelli, M. Prostatic intra-epithelial neoplasia: expression and location of proliferating cell nuclear antigen in epithelial, endothelial and stromal nuclei. Virchows Arch A Pathol Anat Histopathol. 422(3): 185–92, 1993.PubMedCrossRefGoogle Scholar
  25. 25.
    Isaacs, J.T. Molecular markers of prostate cancer metastasis. Am J Pathol 150: 1511, 1997.PubMedGoogle Scholar
  26. 26.
    Lara, P.N. Jr., Kung, H.J., Gumerlock, P.H., Meyers, F.J. Molecular biology of prostate carcinogenesis. Crit Rev Oncol Hematol. 32 (3): 197–208, 1999.PubMedGoogle Scholar
  27. 27.
    Ruijter, E., Montironi, R., van de Kaa, C., Schalken, J. Molecular changes associated with prostate cancer development. Anal Quant Cytol Histol 23 (1): 67–88, 2001.PubMedGoogle Scholar
  28. 28.
    Cress, A.E., Rabinovitz, I., Zhu, W., Nagle, R.B. The α6β1 and α6β4 integrins in human prostate cancer progression. Cancer Metastasis Rev 14: 219–228, 1995.PubMedCrossRefGoogle Scholar
  29. 29.
    Schmelz, M., Cress, A.E., Scott, K.M., Bürger, F., Cui, H., Sallam, K., McDaniel, K.M., Dalkin, B.L., Nagle, R.B. Different Phenotypes in Human Prostate Cancer : α6 or α3 Integrin in Cell-Extracellular Adhesion Sites. Neoplasia 4 (3), 2002.Google Scholar
  30. 30.
    Bonkhoff, H., Remberger, K. Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. The Prostate 28: 98–106, 1996.PubMedCrossRefGoogle Scholar
  31. 31.
    Bussemakers, M., van Bokhoven, A., Tomita, K., Jansen, C.F., Schalken, J.A. Complex cadherin expression in human prostate cancer cells. Int J Cancer 85: 446–450, 2000.PubMedCrossRefGoogle Scholar
  32. 32.
    Zha, S., Ferdinandusse, S., Denis, S., Wanders, R.J., Ewing, C.M., Luo, J., De Marzo A.M., Isaacs, WB. Alpha-methylacyl-CoA racemase as an androgen-independent growth modifier in prostate cancer. Cancer Res: 63 (21): 7365–76, 2003.PubMedGoogle Scholar
  33. 33.
    Rhodes, D.R., Sanda, M.G., Otte, A.P., Chinnaiyan, A.M, Rubin, M.A. Multiplex biomarker approach for determining risk of prostate specific antigen defined recurrence of prostate cancer. J Natl Cancer Inst. 95: 66–81, 2003.Google Scholar
  34. 34.
    Cheng, L., Song, S.Y., Pretlow, T.G., Abdul-Karim, F.W., Rung, H.J., Dawson, D.V., Park, WS, Moon, Y.W., Tsai, M.L., Linehan, W.M., Emmert-Buck, M.R., Liotta, L.A., Zhuang, Z. Evidence of independent origin of multiple tumors from patients with prostate cancer. J Natl. Cancer Inst. 90: 233–7, 1998.PubMedCrossRefGoogle Scholar
  35. 35.
    Wheeler, T.M., Rogers, E., Aihara, M., Scardino, P.T., Thompson, T.C. Apoptotic index as a biomarker in prostatic intraepithelial neoplasia (PIN) and prostate cancer. J Cell Biochem 19: 202–7, 1994.Google Scholar
  36. 36.
    Verhagen, A.P., Ramaekers, F.C., Aalders, T.W., Schaafsma, H.E., Debruyne, F.M., Schalken, J.A. Colocalization of basal and luminal cell-type cytokeratins in human prostate cancer. Cancer Res 52: 6182, 1992.PubMedGoogle Scholar
  37. 37.
    Djakiew, D. Dysregulated expression of growth factors and their receptors in the development of prostate cancer. The Prostate 42: 150–160, 2000.PubMedCrossRefGoogle Scholar
  38. 38.
    Bui, M., Reiter, R. Stem cell genes in androgen-independent prostate cancer. Cancer and Metastasis Reviews 17: 391–399, 1999.CrossRefGoogle Scholar
  39. 39.
    Hayward, S., Baskin, L., Haughney, P., Cunha, A., Foster, B., Dahiya, R., Prins, G., Cunha, GR. Epithelial development in the rat ventral prostate, anterior prostate and seminal vesicle. Acta Anat (Basel) 155: 81–93, 1996.Google Scholar
  40. 40.
    English, H., Santen, R., Isaacs, J. Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. The Prostate 11: 229–42, 1987.PubMedGoogle Scholar
  41. 41.
    Ferguson, J., Zincke, H., Ellison, E., Bergstrahl, E., Bostwick, D.G. Decrease of prostatic intraepithelial neoplasia (PIN) following androgen deprivation therapy in patients with stage T3 carcinoma treated by radical prostatectomy. Urol 44: 91–95, 1994.PubMedCrossRefGoogle Scholar
  42. 42.
    Trapman, J., Brinkman, A.O. The androgen receptor in prostate cancer. Patho Res Prect 192: 752–60, 1996.Google Scholar
  43. 43.
    Nelson, W.G., De Marzo, A.M., Isaacs, W.B. Prostate cancer. New Engl. J Med. 349: 366, 2003.PubMedCrossRefGoogle Scholar
  44. 44.
    Gronberg, H. Prostate cancer epidemiology. Lancet 361: 859, 2003.PubMedCrossRefGoogle Scholar
  45. 45.
    Potten, C., Loeffier, M. Stem cells: attritubes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110: 1001–20, 1990.PubMedGoogle Scholar
  46. 46.
    Paradis, V., Dargere, D., Laurendeau, I., Benoit, G., Vidaud, M., Jardin, A., Bedossa, P. Expression of the RNA component of human telomerase (htr) in prostate cancer, prostatic intraepithelial neoplasia, and normal prostate tissue. J Pathol. 189: 213–218, 1999.PubMedCrossRefGoogle Scholar
  47. 47.
    Walensky, L., Coffey, D., Chen, T., Wu, T., Pasternack, G. A novel M(r) 32,000 nuclear phosphoprotein is selectively expressed in cells competent for self-renewal. Cancer Res. 53: 4720–6, 1993.PubMedGoogle Scholar
  48. 48.
    Reiter, R., Gu, Z., Watabe, T., Thomas, G., Szigeti, K., Davis, E., Wahl, M., Nisitani, S., Yamashiro, J., Le Beau, M., Loda, M., Witte, O. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci USA. 95: 1735, 1998.PubMedCrossRefGoogle Scholar
  49. 49.
    De Marzo, A., Nelson, W., Meeker, A., Coffey, D. Stem cell features of benign and malignant prostate epithelial cells. J Urol. 160: 2381–2392, 1998.PubMedCrossRefGoogle Scholar
  50. 50.
    Moskaluk, C., Duray, P., Cowan, K., Linehan, M., Merino, M. Immunohistochemical expression of pi-class glutathione S-transferase is down-regulated in adenocarcinoma of the prostate. Cancer 79: 1595, 1997.PubMedCrossRefGoogle Scholar
  51. 51.
    Sherr, C. Cancer cell cycles. Science 274: 1675, 1996.CrossRefGoogle Scholar
  52. 52.
    De Marzo, A., Meeker, A., Epstein, J., Coffey, D. Prostate stem cell compartments: expression of p27Kipl in normal, hyperplastic and cancer cells. American Journal of Pathology 153: 911–918, 1998.PubMedGoogle Scholar
  53. 53.
    Hudson, D.L., Guy, A.T., Fry, P., O'Hare, M.J., Watt, F.M., Master, JRW. Epithelial Cell Differentiation Pathways in the Human Prostate: Identification of Intermediate Phenotypes by Keratin Expression. J. Histochem. Cytochem. 49: 271–278, 2001.PubMedGoogle Scholar
  54. 54.
    Collins, A., Habib, F., Maitland, N., Neal, D. Identification and isolation of human prostate epithelial stem cells based on α2β1-integrin expression. Journal of Cell Science 114: 3865–3872, 2001.PubMedGoogle Scholar
  55. 55.
    Hudson, D., O'Hare, M., Watt, F., Masters, J. Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Laboratory Investigations 80: 1243–1250, 2000.CrossRefGoogle Scholar
  56. 56.
    Richardson, G.D., Robson, C.N., Lang, S.H., Neal, D.E., Maitland, N.J., Collins, A.T. CD 133, a novel marker for human prostatic stem cells. J Cell Sci 117: 3539–3545, 2003.CrossRefGoogle Scholar
  57. 57.
    Burger, P.E., Xiong, X., Coetzee, S., Salm, S.N., Moscatelli, D., Goto, K., Wilson, E.L. Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. PNAS, 102 (20): 7180–7185, 2005.PubMedCrossRefGoogle Scholar
  58. 58.
    Xia, T., Blackburn, W., Gardner, W. Fetal prostate growth and development. Pediatr Pathol. 10: 527–537, 1990.PubMedGoogle Scholar
  59. 59.
    Sugimura, Y., Sakurai, M., Hayashi, N., Yamashita, A., Kawamura, J. Age-related changes of the prostate gland in the senescence-accelerated mouse. The Prostate 24: 24–32, 1994.PubMedGoogle Scholar
  60. 60.
    Gardner, W., Bennett, B. The prostate-overview: recent insights and speculations. In Gardner, W.A., Weinstein, R.S. (eds): Pathology and Pathobiology of Urinary Bladder and Prostate. Baltimore, Williams & Wilkins. 129–148, 1992.Google Scholar
  61. 61.
    Pylkkanen, L., Makela, S., Valve, E., Harkonen, P., Toikkanen, S., Santti, R. Prostatic dysplasia associated with increased expression of C-MYC in neonatally estrogenized mice. J. Urol. 149: 1593–601, 1993.PubMedGoogle Scholar
  62. 62.
    Prins, G. Developmental estrogenization of the prostate gland. In: Prostate: Basic and Clinical Aspects. (Ed. R.K. Naz, CRC Press: Boca Raton, FL). 247–65, 1997.Google Scholar
  63. 63.
    Cunha, G., Donjacour, A., Cooke, P., Mee, S., Bigsby, R., Higgins, SJ., Sugimura, Y. The endocrinology and developmental biology of the prostate. Endocrine Reviews 8: 338–362, 1987.PubMedCrossRefGoogle Scholar
  64. 64.
    Thomson, A. Role of androgens and fibroblast growth factors in prostatic development. Reproduction 121: 187–195, 2001.PubMedCrossRefGoogle Scholar
  65. 65.
    Lowsley, O. The development of the human prostate gland with reference to the development of other structures at the neck of the urinary bladder. Am J Anat. 13: 299, 1912.CrossRefGoogle Scholar
  66. 66.
    Kellokumpu-Lethinen, P., Santti, R., Pelliniemi, L. Correlation of early cyto-differentiation of the human fetal prostate and Leydig cells. Anat. Rec. 196: 263, 1980.CrossRefGoogle Scholar
  67. 67.
    Wang, Y., Hayward, S., Cao, M., Thayer, K., Cunha, GR. Cell differentiation lineage in the prostate. Differentiation 68: 270–279, 2001.PubMedCrossRefGoogle Scholar
  68. 68.
    Hayward, S., Baskin, L., Haughney, P., Foster, B., Cunha, A., Dahiya, R., Prins, G., Cunha, G.R. Epithelial development in the rat ventral prostate, anterior prostate and seminal vesicle. Acta Anat (Basel)155: 81–93, 1996.Google Scholar
  69. 69.
    Donjacour, A., Cunha, G.R. Assessment of prostatic protein secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium from normal or androgen-insensitive mice. Endocrinology 131: 2342–2350, 1993.CrossRefGoogle Scholar
  70. 70.
    Podlasek, C., Clemens, J., Bushman, W. Hoxa-13 gene mutation results in abnormal seminal vesicle and prostate development. J. Urol. 161: 1655–1661, 1999.PubMedCrossRefGoogle Scholar
  71. 71.
    Oefelein, M., Chin-Chance, C., Bushman, W. Expression of the homeotic gene Hox-dl3 in the developing and adult mouse prostate. J. Urol. 155: 342–346, 1996.PubMedCrossRefGoogle Scholar
  72. 72.
    Bhatia-Gaur, R., Donjacour, A.A, Sciavolino, P.J., Kim, M., Desai, N., Young, Norton C.R., Gridley, T., Cardiff, R.D., Cunha, G.R., Abate-Shen, C., Shen, M.M. Roles for Nkx3.1 in prostatedevelopment and cancer. Genes Dev. 13: 966–977, 1999. Acta Anat (Basel) 155: 94–103,1996.PubMedGoogle Scholar
  73. 73.
    Sugimura, Y., Foster, B., Horn, Y., Lipschutz, J., Rubin, J., Finch, P., Aaronson, S., Hayashi, N. Kawamura, J., Cunha, G.R. Keratinocyte growth factor (KGF) can replace testosterone in the ductal branching morphogenesis of the rat ventral prostate. Int. J. Dev. Biol. 40: 941–951, 1996.PubMedGoogle Scholar
  74. 74.
    Thomson, A., Cunha, G.R. Prostatic growth and development are regulated by FGF10. Development 126: 3693–3701, 1999.PubMedGoogle Scholar
  75. 75.
    Ruan, W., Powell-Braxton, L., Kopchick, J., Kleinberg, D. Evidence that insulin-like growth factor 1 and growth hormone are required for prostate gland development. Endocrinology 140: 1984–1989, 1999.PubMedCrossRefGoogle Scholar
  76. 76.
    Salm, S.N., Burger, P., Coetzee, S., Goto, K., Moscatelli, D., Wilson, E.L. TGF-β maintains dormancy of prostatic stem cells in the proximal region of ducts.Google Scholar
  77. 77.
    Wang, B.-E., Shou, J., Ross, S., Koeppen, H., de Sauvage, F.J., Gao, W.-Q. Inhibition of Epithelial Ductal Branching in the Prostate by Sonic Hedgehog Is Indirectly Mediated by Stromal Cells. J. Biol. Chem. 278: 18506–18513, 2003.PubMedCrossRefGoogle Scholar
  78. 78.
    Lamm, M., Catbagan, W., Laciak, R., Barnett, D., Hebner, C., Gaffield, W., Walterhouse, D., Iannaccone, P. Sonic hedgehog activates mesenchymal Glil expression during prostate ductal bud formation. Developmental Biol. 249: 349–366, 2002.CrossRefGoogle Scholar
  79. 79.
    Marker, P., Stephan, J.P., Lee, J., Bald, Mather J., Cunha, G.R. Fucosyltransferase 1 and H-Type complex carbohydrates modulate epithelial cell proliferation during prostatic branching morphogenesis. Dev. Biol. 233: 95–108, 2001.PubMedCrossRefGoogle Scholar
  80. 80.
    Ide, H., Seligson, D., Memarzadeh, S., Xin, L., Horvath, S., Dubey, P., Flick, M., Kacinski, B., Palotie, A., Witte, O. Expression of colony-stimulating factor 1 receptor during prostate development and prostate cancer progression. PNAS 99: 14404–14409, 2002.PubMedCrossRefGoogle Scholar
  81. 81.
    Signoretti, S., Waltregny, D., Dilks, J., Isaac, B., Lin, D., Garraway, L., Yang, A., Montironi, R., McKeon, F., Loda, M. p63 Is a Prostate Basal Cell Marker and Is Required for Prostate. Development. Am J Pathol. 157: 1769–1775, 2000.Google Scholar
  82. 82.
    Gakunga, P., Frost, G., Shuster, S., Cunha, G., Formby, B., Stern, R. Hyaluronan is a prerequisit for ductal branching morphogenesis. Development 124: 3987–3997, 1997.PubMedGoogle Scholar
  83. 83.
    Elfman, F., Bok, R., Conn, M., Shuman, M., Cunha, G.R. Urokinase plasminogen activator amino-terminal peptides inhibit development of the rat ventral prostate. Differentiation 69: 108–120, 2001.PubMedCrossRefGoogle Scholar
  84. 84.
    Lamm, M., Podlasek, C., Barnett, D., Lee, J., Clemens, J., Hebner, C., Bushman, W. Mesenchymal factor bone morphogenetic protein 4 restricts ductal budding and branching morphogenesis in the developing prostate. Developmental Biol. 232: 301–314, 2001.CrossRefGoogle Scholar
  85. 85.
    Cancilla, B., Jarred, R., Wang, H., Mellor, S., Cunha, G., Risbridger, G. Regulation of prostate branching morphogenesis by activin A and follistatin. Dev. Biol. 237: 145–158, 2001.PubMedCrossRefGoogle Scholar
  86. 86.
    Schmelz, M., Moll, R., Hesse, U., Prasad, A.R., Gandolfi, J.A., Hasan, S.R., Bartholdi, M., Cress, A.E. Identification of a stem cell candidate in the normal human prostate gland. Eur J Cell Biol 84: 341–354.Google Scholar
  87. 87.
    McGowan, K., Coulombe, P. The wound repair-associated keratins 6, 16 and 17. Insights into the role of intermediate filaments in specifying keratinocyte cytoarchitecture. Subcellular Biochemistry: Intermediate Filaments, eds. Herrmann and Harris. 31: 173–204, 1998.Google Scholar
  88. 88.
    Parrish, A., Sallam, K., Nyman, D., Orozco, J., Cress, A.E., Dalkin, B., Nagle, R., Gandolfi, A. Culturing precision-cut human prostate slices as an in vitro model of prostate pathobiology. Cell Biol Toxicol 18: 205–219, 2002.PubMedCrossRefGoogle Scholar
  89. 89.
    Smalley, M., Ashworth, A. Stem cells and breast cancer: a field in transit. Nat Rev Cancer 3: 832–844, 2003.PubMedCrossRefGoogle Scholar
  90. 90.
    Stasiak, P., Purkis, P., Leigh, I., Lane, E. Keratin 19: predicted amino acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratins. J Invest Dermatol 92: 707–716, 1989.PubMedCrossRefGoogle Scholar
  91. 91.
    Hudson, D.L., Guy, A., Fry, P., O'Hare, M.J., Watt, F.M., Masters, J.R.W. Epithelial Cel Differentiation pathways in the human prostate : Identification of intermediate phenotypes by keratin expression. J Histochem Cytochem 49: 271–278, 2001.PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Monika Schmelz
    • 1
    • 2
  • Anil Prasad
    • 1
    • 2
  1. 1.Department of PathologySouthern Arizona Veterans Affairs Health Care SystemTucsonUSA
  2. 2.Department of Pathology, Arizona Health Sciences CenterUniversity of ArizonaTucsonUSA

Personalised recommendations