REGULATION OF CADHERINS DURING PROSTATE CANCER PROGRESSION

  • Ronald L. Heimark
  • Nelson R. Alexander
Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 9)

Abstract

Disruption of tight cell adhesion mediated by E-cadherin is an important step in carcinoma progression for cells to initiate cell migration and progress to metastasize. During prostate cacinogenesis, E-cadherin gene expression or function is downregulated through multiple mechanisms, many of which combine to silence E-cadherin expression through transcriptional regulation at the level of the E-cadherin promoter. Recent evidence indicates that concomitant with the transcriptional silencing of E-cadherin in prostate carcinomas, there is transcriptional upregulation of the mesenchymal cadherin, N-cadherin. The mechanisms of E- to N-cadherin switching in carcinomas and Key the potential roles of N-cadherin in tumor metastasis are summarized.

Keywords

Zinc Migration Tyrosine Adenocarcinoma Compaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Nagle, R.B., Knox, J.D., Wolf, C., Bowden, G.T., and Cress, A.E., 1994, Adhesion molecules, extracellular matrix, and proteases in prostate carcinoma. J. Cellular Biochem. 19: 232–237.Google Scholar
  2. 2.
    Ross, J.S., Figge, H.L., Bui, H.X., del Rosario, A.D., Fisher, H.A., Nazeer, T.X., Ingle, R., and Kim, D.N., 1994, E-cadherin expression in prostatic carcinoma biopsies: correlation with tumor grade, DNA content, pathologic stage, and clinical outcome. Modern Pathology 7: 835–841.PubMedGoogle Scholar
  3. 3.
    Schipper, J.H., Frixen, U.H., Behrens, J., Unger, A., Jahnke, K., and Birchmeier, W., 1991, E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res. 51: 6328–6337.PubMedGoogle Scholar
  4. 4.
    Moll, R., Mitze, M., Frixen, U.H., and Birchmeier, W., 1993, Differential loss of E-cadherin expression in infiltrating ductal and lobular breast carcinomas. Am. J. Pathol. 143: 1731–1742.PubMedGoogle Scholar
  5. 5.
    Behrens, J., Mareel, M.M., Van Roy, F.M., and Birchmeier, W., 1989, Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell- cell adhesion. J. Cell Biol. 108: 2435–2447.PubMedCrossRefGoogle Scholar
  6. 6.
    Nagafuchi, A., Takeichi, M., 1988, Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 7: 3679–3684.PubMedGoogle Scholar
  7. 7.
    Umbas, R., Schalken, J.A., Aalders, T.W., Carter, B.S., Karthaus, H.F., Schaafsma, H.E., and Isaacs, W.B., 1992, Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res. 52: 5104–5109.PubMedGoogle Scholar
  8. 8.
    Umbas, R., Isaacs, W.B., Bringuier, P.P. , Schaafsma, H.E., Karthaus, H.F., Oosterhof, G.O., Debruyne, F.M., and Schalken, J.A., 1994, Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res. 54: 3929–3933.PubMedGoogle Scholar
  9. 9.
    Kuczyk, M., Serth, J., Machtens, S., Bokemeyer, C., Bathke, W., Stief, C., and Jonas, U., 1998, Expression of E-cadherin in primary prostate cancer: correlation with clinical features. Br. J. Urol. 81: 406–412.PubMedGoogle Scholar
  10. 10.
    Dhanasekaran, S.M., Barrette, T.R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., Pienta, K.J., Rubin, M.A., and Chinnaiyan, A.M., 2001, Delineation of prognostic biomarkers in prostate cancer. Nature 412: 822–826.PubMedCrossRefGoogle Scholar
  11. 11.
    De Marzo, A.M., Knudsen, B., Chan-Tack, K., and Epstein, J.I., 1999, E-cadherin expression as a marker of tumor aggressiveness in routinely processed radical prostatectomy specimens, Urology 53: 707–713.PubMedCrossRefGoogle Scholar
  12. 12.
    Berx, G., Staes, K., van Hengel, J., Molemans, F., Bussemakes, MJ., van Bokhoven, A., and Van Roy, F., 1995 Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics 26: 281–289.PubMedCrossRefGoogle Scholar
  13. 13.
    Graff, J.R., Gabrielson, E., Fujii, H., Baylin, S.B., and Herman, J.G., 2000, Methylation patterns of the E-cadherin 5’ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J. Biol. Chem. 275: 2727–2732.PubMedCrossRefGoogle Scholar
  14. 14.
    Graff, J.R., Herman, J.G., Lapidus, R.G., Chopra, H., Xu, R., Jarrard, D.F. X.I. W., Pitha, P.M., Davidson, N.E., and Baylin, S.B., 1995, E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 55: 5195–5199.PubMedGoogle Scholar
  15. 15.
    Li, L.C., Zhao, H., Nakajima, K., Oh, B.R., Ribeiro Filho, L.A., Carroll, P. , and Dahiya, R., 2001, Methylation of the E-cadherin gene promoter correlates with progression of prostate cancer. J. Urol. 166: 705–709.PubMedCrossRefGoogle Scholar
  16. 16.
    Kallakury, B.V., Sheehan, C.E., Winn-Deen, E., Oliver, J., Fisher, H.A., Kaufman, R.P. , Jr., and Ross, J.S., 2001, Decreased expression of catenins (alpha and beta), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer 92: 2786–2795.PubMedCrossRefGoogle Scholar
  17. 17.
    Kang, G.H., Lee, S., Lee, H.J., and Hwang, K.S., 2004, Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J. Pathol. 202: 233–240.PubMedCrossRefGoogle Scholar
  18. 18.
    Tomita, K., van Bokhoven, A., van Leenders, G.J., Ruijter, E.T., Jansen, C.F., Bussemakers, M.J., and Schalken, J.A., 2000, Cadherin switching in human prostate cancer progression. Cancer Res. 60: 3650–3654.PubMedGoogle Scholar
  19. 19.
    Bussemakers, M.J., van Bokhoven, A., Tomita, K., Jansen, C.F., and Schalken, J.A., 2000, Complex cadherin expression in human prostate cancer cells. Int. J. Cancer 85: 446–450.PubMedCrossRefGoogle Scholar
  20. 20.
    Tran, N.L., Cress, A.E., Nagle, R.B., and Heimark, R.L., 1999, Expression of N-cadherin in Invasive Human Prostate Carcinomas: Transformation from an Epithelial to a Mesenchymal Phenotype. Am. J. Pathol. 155: 787–798.PubMedGoogle Scholar
  21. 21.
    Jaggi, M., Nazemi, T., Abrahams, N.A., Baker, J.J., Galich, A., Smith, L.M., and Balaji, K.C., 2005, N-cadherin switching occurs in high Gleason grade prostate cancer. Prostate.Google Scholar
  22. 22.
    Islam, S., Carey, T.E., Wolf, G.T., Wheelock, M.J., and Johnson, K.R., 1996, Expression of N-cadherin by human squamous carcinoma cells induces a scattered fibroblastic phenotype with disrupted cell-cell adhesion. J. of Cell Biol. 135: 1643–1654.CrossRefGoogle Scholar
  23. 23.
    Hazan, R.B., Kang, L., Whooley, B.P. , and Borgen, P. I., 1997, N-cadherin promotes adhesion between invasive breast cancer cells and the stroma. Cell Adhesion & Communication 4: 399–411.Google Scholar
  24. 24.
    Nieman, M.T., Prudoff, R.S., Johnson, K.R., and Wheelock, M.J., 1999, N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J. Cell Biol. 147: 631–644.PubMedCrossRefGoogle Scholar
  25. 25.
    Li, Y., Liu, W., Hayward, S.W., Cunha, G.R., and Baskin, L.S., 2000, Plasticity of the urothelial phenotype: effects of gastro-intestinal mesenchyme/stroma and implications for urinary tract reconstruction. Differentiation 66: 126–135.PubMedCrossRefGoogle Scholar
  26. 26.
    Hazan, R.B., Phillips, G.R., Qiao, R.F., Norton, L., and Aaronson, S.A., 2000, Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J. Cell Biol. 148: 779–790.PubMedCrossRefGoogle Scholar
  27. 27.
    Villers, A., McNeal, J.E., Redwine, E.A., Freiha, F.S., and Stamey, T.A., 1989, The role of perineural space invasion in the local spread of prostatic adenocarcinoma. J. Urology 142: 763–768.Google Scholar
  28. 28.
    Navarro, P. , Ruco, L., and Dejana, E., 1998, Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. J. of Cell Biol. 140: 1475–1484.CrossRefGoogle Scholar
  29. 29.
    Johnson, K.R., Lewis, J.E., Li, D., Wahl, J., Soler, A.P. , Knudsen, K.A., Wheelock, and M.J., 1993, P- and E-cadherin are in separate complexes in cells expressing both cadherins. Exp. Cell Res. 207: 252–260.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen, H., Paradies, N.E., Fedor-Chaiken, M., and Brackenbury, R., 1997, E-cadherin mediates adhesion and suppresses cell motility via distinct mechanisms. J. Cell Science 110: 345–356.PubMedGoogle Scholar
  31. 31.
    Williams, E.J., Furness, J., Walsh, F.S., and Doherty, P. , 1994, Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13: 583–594.PubMedCrossRefGoogle Scholar
  32. 32.
    Suyama, K., Shapiro, I., Guttman, M., and Hazan, R.B., 2002, A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2: 301–314.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim, J.B., Islam, S., Kim, Y.J., Prudoff, R.S., Sass, K.M., Wheelock, MJ, and Johnson, K.R., 2000, N-Cadherin extracellular repeat 4 mediates epithelial to mesenchymal transition and increased motility. J. Cell Biol. 151: 1193–1206.PubMedCrossRefGoogle Scholar
  34. 34.
    Luo, Y., Radice, G.L., 2005, N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis. J. Cell Biol. 169: 29–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Steinberg, M.S., Takeichi, M., 1994, Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl. Acad. Sci. USA, 91: 206–209.PubMedCrossRefGoogle Scholar
  36. 36.
    Behrens, J., Lowrick, O., Klein-Hitpass, L., and Birchmeier, W., 1991, The E-cadherin promoter: functional analysis of a G.C-rich region and an epithelial cell-specific palindromic regulatory element. Proc. Natl. Acad. Sci. USA, 88: 11495–11499.PubMedCrossRefGoogle Scholar
  37. 37.
    Hennig, G., Lowrick, O., Birchmeier, W., and Behrens, J., 1996, Mechanisms identified in the transcriptional control of epithelial gene expression. J. Biol. Chem. 271: 595–602.PubMedCrossRefGoogle Scholar
  38. 38.
    Comijn, J., Berx, G., Vermassen, P. , Verschueren, K., van Grunsven, L., Bruyneel, E., Mareel, M., Huylebroeck, D., and Van Roy, F., 2001, The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell 7: 1267–1278.PubMedCrossRefGoogle Scholar
  39. 39.
    Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., and Garcia, D.H., 2000, The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology 2: 84–89.PubMedCrossRefGoogle Scholar
  40. 40.
    Novak, A., Hsu, S.C., Leung-Hagesteijn, C., Radeva, G., Papkoff, J., Montesano, R., Roskelley, C., Grosschedl, R., and Dedhar, S., 1998, Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways. Proc. Natl. Acad. Sci. USA, 95, 4374–4379.PubMedCrossRefGoogle Scholar
  41. 41.
    Tan, C., Costello, P. , Sanghera, J., Dominguez, D., Baulida, J., de Herreros, A.G., and Dedhar, S., 2001, Inhibition of integrin linked kinase (ILK) suppresses beta-catenin-Lef/Tcf-dependent transcription and expression of the E-cadherin repressor, snail, in APC-/- human colon carcinoma cells. Oncogene, 20 133–140.PubMedCrossRefGoogle Scholar
  42. 42.
    Guaita, S., Puig, I., Franci, C., Garrido, M., Dominguez, D., Batlle, E., Sancho, E., Dedhar, S., de Herreros, A.G., and Baulida, J., 2002, Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression . J. Biol. Chem. 277: 39209–39216.PubMedCrossRefGoogle Scholar
  43. 43.
    Perez-Moreno, M.A., Locascio, A., Rodrigo, I., Dhondt, G., Portillo, F., Nieto, M.A., and Cano, A., 2001, A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J. Biol. Chem. 276: 27424–27431.PubMedCrossRefGoogle Scholar
  44. 44.
    Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P. , Gitelman, I., Richardson, A., and Weinberg, R.A., 2004, Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939.PubMedCrossRefGoogle Scholar
  45. 45.
    Howe, L.R., Watanabe, O., Leonard, J., and Brown, A.M., 2003, Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res. 63: 1906–1913.PubMedGoogle Scholar
  46. 46.
    Oda, H., Tsukita, S., and Takeichi, M., 1998, Dynamic behavior of the cadherin-based cell-cell adhesion system during Drosophila gastrulation. Dev. Biol. 203: 435–450.PubMedCrossRefGoogle Scholar
  47. 47.
    Rosivatz, E., Becker, I., Specht, K., Fricke, E., Luber, B., Busch, R., Hofler, H., and Becker, K.F., 2002, Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am. J. Pathol. 161: 1881–1891.PubMedGoogle Scholar
  48. 48.
    Kwok, W.K., Ling, M.T., Lee, T.W., Lau, T.C., Zhou, C., Zhang, X., Chua, C.W., Chan, K.W., Chan, F.L., Glackin, C., Wong, Y.C., and Wang, X., 2005, Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res. 65: 5153–5162.PubMedCrossRefGoogle Scholar
  49. 49.
    Stasinopoulos, I.A., Mironchik, Y., Raman, A., Wildes, F., Winnard, P. , Jr., and Raman, V., 2005, HOXA5-twist interaction alters p53 homeostasis in breast cancer cells. J. Biol. Chem., 280: 2294–2299.PubMedCrossRefGoogle Scholar
  50. 50.
    Hamamori, Y., Sartorelli, V., Ogryzko, V., Puri, P. L., Wu, H.Y., Wang, J.Y., Nakatani, Y., and Kedes, L., 1999, Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96: 405–413.PubMedCrossRefGoogle Scholar
  51. 51.
    Firulli, B.A., Krawchuk, D., Centonze, V.E., Vargesson, N., Virshup, D.M., Conway, S.J., Cserjesi, P. , Laufer, E., and Firulli, A.B., 2005, Altered Twist1 and Hand2 dimerization is associated with Saethre-Chotzen syndrome and limb abnormalities. Nat. Genet. 37: 373–381.PubMedCrossRefGoogle Scholar
  52. 52.
    Wallis, J., Fox, M.F., and Walsh, F.S., 1994, Structure of the human N-cadherin gene: YAC analysis and fine chromosomal mapping to 18q11.2. Genomics 22: 172–179.PubMedCrossRefGoogle Scholar
  53. 53.
    Le Mee, S., Fromigue, O., and Marie, P. J., 2005, Sp1/Sp3 and the myeloid zinc finger gene MZF1 regulate the human N-cadherin promoter in osteoblasts. Exp. Cell Res. 302: 129–142.PubMedCrossRefGoogle Scholar
  54. 54.
    Bowen, C., Bubendorf, L., Voeller, H.J., Slack, R., Willi, N., Sauter, G., Gasser, T.C., Koivisto, P. , Lack, E.E., Kononen, J., Kallioniemi, O.P. , and Gelmann, E.P. , 2000, Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res. 60: 6111–6115.PubMedGoogle Scholar
  55. 55.
    Abdulkadir, S.A., Magee, J.A., Peters, T.J., Kaleem, Z., Naughton, C.K., Humphrey, P. A., and Milbrandt, J., 2002, Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia . Mol. Cell Biol. 22: 1495–1503.PubMedCrossRefGoogle Scholar
  56. 56.
    Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., Bigner, S.H., Giovanella, B.C., Ittmann, M., Tycko, B., Hibshoosh, H., Wigler, M.H., and Parsons, R., 1997, PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 275: 1943–1947.PubMedCrossRefGoogle Scholar
  57. 57.
    Abate-Shen, C., Banach-Petrosky, W.A., Sun, X., Economides, K.D., Desai, N., Gregg, J.P. , Borowsky, A.D., Cardiff, R.D., and Shen, M.M., 2003, Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Research.63: 3886–90.PubMedGoogle Scholar
  58. 58.
    Bachelder, R.E., Yoon, S.O., Franci, C., de Herreros, A.G., and Mercurio, A.M., 2005, Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition . J. Cell Biol. 168: 29–33.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhou, B.P. , Deng, J., Xia, W., Xu, J., Li, Y.M., Gunduz, M., and Hung, M.C., 2004, Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol., 6: 931–940.PubMedCrossRefGoogle Scholar
  60. 60.
    Yap, A.S., Niessen, C.M., and Gumbiner, B.M., 1998, The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J. Cell Biol. 141: 779–789.PubMedCrossRefGoogle Scholar
  61. 61.
    Anastasiadis, P. Z., Moon, S.Y., Thoreson, M.A., Mariner, D.J., Crawford, H.C., Zheng, Y., and Reynolds, A.B., 2000, Inhibition of RhoA by p120 catenin. Nature Cell Biology 2: 637–644.PubMedCrossRefGoogle Scholar
  62. 62.
    Noren, N.K., Liu, B.P. , Burridge, K., and Kreft, B., 2000, p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol. 150: 567–580.PubMedCrossRefGoogle Scholar
  63. 63.
    Braga, V.M., Machesky, L.M., Hall, A., and Hotchin, N.A., 1997, The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J. Cell Biol. 137: 1421–1431.PubMedCrossRefGoogle Scholar
  64. 64.
    Takaishi, K., Sasaki, T., Kotani, H., Nishioka, H., and Takai, Y., 1997, Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. J. Cell Biol. 139: 1047–1059.PubMedCrossRefGoogle Scholar
  65. 65.
    Kuroda, S., Fukata, M., Nakagawa, M., Fujii, K., Nakamura, T., Ookubo, T., Izawa, I., Nagase, T., Nomura, N., Tani, H., Shoji, I., Matsuura, Y., Yonehara, S., and Kaibuchi, K., 1998, Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin- mediated cell-cell adhesion. Science 281: 832–835.PubMedCrossRefGoogle Scholar
  66. 66.
    Malliri, A., van Es, S., Huveneers, S., and Collard, J.G., 2004, The Rac exchange factor Tiam 1 is required for the establishment and maintenance of cadherin-based adhesions. J. Biol. Chem. 279: 30092–30098.PubMedCrossRefGoogle Scholar
  67. 67.
    Muller, T., Choidas, A., Reichmann, E., and Ullrich, A, 1999, Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J. Biol. Chem. 274: 10173–10183.PubMedCrossRefGoogle Scholar
  68. 68.
    Rosato, R., Veltmaat, J.M., Groffen, J., and Heisterkamp, N., 1998, Involvement of the tyrosine kinase fer in cell adhesion. Molecular & Cellular Biology 18: 5762–5770.Google Scholar
  69. 69.
    Piedra, J., Martinez, D., Castano, J., Miravet, S., Dunach, M., and de Herreros, A.G., 2001, Regulation of beta-catenin structure and activity by tyrosine phosphorylation. J. Biol. Chem. 276: 20436–20443.PubMedCrossRefGoogle Scholar
  70. 70.
    Allard, P. , Zoubeidi, A., Nguyen, L.T., Tessier, S., Tanguay, S., Chevrette, M., Aprikian, A., and Chevalier, S., 2000, Links between Fer tyrosine kinase expression levels and prostate cell proliferation. Molecular & Cellular Endocrinology 159: 63–77.CrossRefGoogle Scholar
  71. 71.
    Arregui, C., Pathre, P. , Lilien, J., and Balsamo, J., 2000, The nonreceptor tyrosine kinase fer mediates cross-talk between N-cadherin and beta1-integrins. J. Cell Biol. 149: 1263–1274.PubMedCrossRefGoogle Scholar
  72. 72.
    Krakstad, B.F., Ardawatia, V.V., and Aragay, A.M., 2004, A role for Galpha12/Galpha13 in p120ctn regulation. Proc. Natl. Acad. Sci. 101:10314–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Kaplan, D.D., Meigs, T.E., and Casey, P. J., 2001, Distinct regions of the cadherin cytoplasmic domain are essential for functional interaction with Galpha 12 and betacatenin. J. Biol. Chem. 276: 44037–44043.PubMedCrossRefGoogle Scholar
  74. 74.
    Kurose, H., 2003, Galpha12 and Galpha13 as key regulatory mediator in signal transduction. Life Sci. 74: 155–161.PubMedCrossRefGoogle Scholar
  75. 75.
    Yan, H.X., He, Y.Q., Dong, H., Zhang, P. , Zeng, J.Z., Cao, H.F., Wu, M.C., and Wang, H.Y., 2002, Physical and functional interaction between receptor-like protein tyrosine phosphatase PCP-2 and beta-catenin, Biochemistry 41: 15854–15860.PubMedCrossRefGoogle Scholar
  76. 76.
    Ukropec, J.A., Hollinger, M.K., Salva, S.M., and Woolkalis, M.J., 2000, SHP2 association with VE-cadherin complexes in human endothelial cells is regulated by thrombin. J. Biol.Chem. 275: 5983–5986.PubMedCrossRefGoogle Scholar
  77. 77.
    Holsinger, L.J., Ward, K., Duffield, B., Zachwieja, J., and Jallal, B., 2002, The transmembrane receptor protein tyrosine phosphatase DEP1 interacts with p. 120(ctn). Oncogene 21: 7067–7076.CrossRefGoogle Scholar
  78. 78.
    Brady-Kalnay, S.M., Mourton, T., Nixon, J.P. , Pietz, G.E., Kinch, M., Chen, H., Brackenbury, R., Rimm, D.L., Del Vecchio, R.L., and Tonks, N.K., 1998, Dynamic interaction of PTPmu with multiple cadherins in vivo. J. of Cell Biol. 141: 287–296.CrossRefGoogle Scholar
  79. 79.
    Balsamo, J., Leung, T., Ernst, H., Zanin, M.K., and Hoffman, S.X., 1996, Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin. J. Cell Biol. 134: 801–813.PubMedCrossRefGoogle Scholar
  80. 80.
    Hellberg, C.B., Burden-Gulley, S.M., Pietz, G.E., and Brady-Kalnay, S.M., 2002, Expression of the receptor protein-tyrosine phosphatase, PTPmu, restores E-cadherindependent adhesion in human prostate carcinoma cells. J.Biol.Chem. 277: 11165–11173.PubMedCrossRefGoogle Scholar
  81. 81.
    Chattopadhyay, N., Wang, Z., Ashman, L.K., Brady-Kalnay, S.M., and Kreidberg, J.A., 2003) alpha3beta1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion. J. Cell Biol. 163: 1351–1362.PubMedCrossRefGoogle Scholar
  82. 82.
    Adams, C.L., Chen, Y.T., Smith, S.J., and Nelson, W.J., 1998, Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of Ecadheringreen fluorescent protein. J. Cell Biol. 142: 1105–1119.PubMedCrossRefGoogle Scholar
  83. 83.
    Mo, Y.Y., Reynolds, A.B., 1996, Identification of murine p120 isoforms and heterogeneous expression of p120cas isoforms in human tumor cell lines. Cancer Res. 56: 2633–2640.PubMedGoogle Scholar
  84. 84.
    Aono, S., Nakagawa, S., Reynolds, A.B., and Takeichi, M., 1999, p120(ctn) acts as an inhibitory regulator of cadherin function in colon carcinoma cells. J. Cell Biol. 145: 551–562.PubMedCrossRefGoogle Scholar
  85. 85.
    Berens, M.E., Rief, M.D., Loo, M.A., and Giese, A., 1994, The role of extracellular matrix in human astrocytoma migration and proliferation studied in a microliter scale assay. Clinical & Expt. Metastasis 12: 405–415.CrossRefGoogle Scholar
  86. 86.
    Maeda, M., Johnson, K.R., and Wheelock, M.J., 2005, Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition. J.Cell Sci. 118: 873–887.PubMedCrossRefGoogle Scholar
  87. 87.
    Williams, E.J., Williams, G., Howell, F.V., Skaper, S.D., Walsh, F.S., and Doherty, P. , 2001, Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J. Biol. Chem. 276: 43879–43886.PubMedCrossRefGoogle Scholar
  88. 88.
    Monier-Gavelle, F., Duband, J.L., 1997, Cross talk between adhesion molecules: control of N-cadherin activity by intracellular signals elicited by beta1 and beta3 integrins in migrating neural crest cells. J. Cell Biol. 137: 1663–1681.PubMedCrossRefGoogle Scholar
  89. 89.
    Arregui, C., Pathre, P. , Lilien, J., and Balsamo, J., 2000, The nonreceptor tyrosine kinase fer mediates cross-talk between N-cadherin and beta1-integrins. J. Cell Biol. 149: 1263–1274.PubMedCrossRefGoogle Scholar
  90. 90.
    Ojakian, G.K., Ratcliffe, D.R., and Schwimmer, R., 2001, Integrin regulation of cell-cell adhesion during epithelial tubule formation. J. Cell Science, 114: 941–952.PubMedGoogle Scholar
  91. 91.
    Frisch, S.M., Ruoslahti, E., 1997, Integrins and anoikis. Current Opinion in Cell Biology 9: 701–706.PubMedCrossRefGoogle Scholar
  92. 92.
    Tran, N.L., Adams, D.G., Vallincourt, R.L., and Heimark, R.L., 2002, Signaling from N-cadherin increases Bcl-2: regulation of the Phosphatidylinositol 3-Kinase/Akt pathway by homophilic adhesion and actin cytoskeletal organization. J Biol. Chem. 277: 32905–32914.PubMedCrossRefGoogle Scholar
  93. 93.
    Lambert, M., Choquet, D., and Mege, R.M., 2002, Dynamics of ligand-induced, Rac1-dependent anchoring of cadherins to the actin cytoskeleton. J. Cell Biol. 157: 469–479.PubMedCrossRefGoogle Scholar
  94. 94.
    Majumder, P. K., Yeh, J.J., George, D.J., Febbo, P.G., Kum, J., Xue, Q., Bikoff, R., Ma, H., Kantoff, P.W., Golub, T.R., Loda, M., and Sellers, W.R., 2003, Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proc. Natl. Acad. Sci. U.S.A 100: 7841–7846.PubMedCrossRefGoogle Scholar
  95. 95.
    Kreisberg, J.I., Malik, S.N., Prihoda, T.J., Bedolla, R.G., Troyer, D.A., Kreisberg, S., and Ghosh, P.M., 2004, Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res. 64: 5232–5236.PubMedCrossRefGoogle Scholar
  96. 96.
    Apakama, I., Robinson, M.C., Walter, N.M., Charlton, R.G., Royds, J.A., Fuller, C.E., Neal, D.E., and Hamdy, F.C., 1996, bcl-2 overexpression combined with p53 protein accumulation correlates with hormone-refractory prostate cancer. British J. Cancer 74: 1258–1262.Google Scholar
  97. 97.
    Colombel, M., Symmans, F., Gil, S., O'Toole, K.M., Chopin, D., Benson, M., Olsson, C.A., Korsmeyer, S., and Buttyan, R., 1993, Detection of the apoptosis-suppressing oncoprotein bc1–2 in hormone-refractory human prostate cancers. American Journal of Pathology 143: 390–400.PubMedGoogle Scholar
  98. 98.
    McDonnell, T.J., Navone, N.M., Troncoso, P. , Pisters, L.L., Conti, C, von Eschenbach, A.C., Brisbay, S., and Logothetis, C.J., 1997, Expression of bcl-2 oncoprotein and p53 protein accumulation in bone marrow metastases of androgen independent prostate cancer. J. Urology 157: 569–574.CrossRefGoogle Scholar
  99. 99.
    Bruckheimer, E.M., Cho, S., Brisbay, S., Johnson, D.J., Gingrich, J.R., Greenberg, N., and McDonnell, T.J., 2000, The impact of bcl-2 expression and bax deficiency on prostate homeostasis in vivo. Oncogene 19: 2404–2412.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Ronald L. Heimark
    • 1
  • Nelson R. Alexander
    • 1
  1. 1.Department of Surgery and the Cancer Biology GraduateProgram, Arizona Health Sciences CenterUniversity of ArizonaTucsonUSA

Personalised recommendations